
October 6, 2006 11:32 WSPC - Proceedings Trim Size: 11in x 8.5in 102

1

Support Vector Machine based Hierarchical Classifiers for Large Class Problems

Tejo Krishna Chalasani, Anoop M. Namboodiri, C.V. Jawahar

Center for Visual Information Technology, International Institute of Information Technology, Hyderabad, India
E-mail: tejokrishna@students.iiit.ac.in, anoop@iiit.ac.in, jawahar@iiit.ac.in

One of the prime challenges in designing a classifier for large-class problems such as Indian language OCRs is the presence of a
large similar looking character set. The nature of the character set introduces problems with accuracy and efficiency of the classifier.
Hierarchical classifiers such as Binary Hierarchical Decision Trees (BHDTs) using SVMs as component classifiers have been effectively
used to tackle such large-class classification problems. The accuracy and efficiency of a BHDT classifier will depend on: i) the accuracy
of the component classifiers, ii) the separability of the clusters at each node in a hierarchical classifier, and iii) the balance of the BHDT.
We propose methods to tackle each of the above problems in the case of binary character images. We present a new distance measure,
which is intuitively suitable when Support Vector Machines are used as component classifiers. We also propose a novel method for
balancing the BHDT to improve its efficiency, while maintaining the accuracy. Finally we propose a method to generate overlapping
partitions to improve the accuracy of BHDTs. Comparison of the method with other forms of classifier combination techniques such as
1vs1, 1vsRest and Decision Directed Acyclic Graphs shows that the proposed approach is highly efficient, while being comparable
with the more expensive techniques in terms of accuracy. The experiments are focused on the problem of Indian language OCR, while
the framework is usable for other problems as well.

Keywords: Binary Hierarchical Decision Tree, Support Vector Machine, Decision Directed Acyclic Graph.

1. Introduction

Efficient and accurate OCR engines play a highly critical
role in making the information present in large quanti-
ties of document images, available for searching and in-
dexing. The challenges in developing OCR systems for
Indian languages are different from that of English due
to a variety of reasons. Unlike English, most of the In-
dian languages have a large number of characters in their
scripts, which makes the task of designing a classifier for
them, much more difficult. The characters in Indian lan-
guages are formed as a composition of basic shapes and
sometimes also a composition of basic characters. This
composition not only leads to a large number of charac-
ters because of the numerous possible combinations, but
also similar looking characters, which makes the design-
ing of the classifier more difficult.

Support Vector Machines (SVMs) [1] that build large
margin classifiers for binary class classification problem,
they have proved to have high generalization performance
both theoretically and empirically. The SVM formulation
tries to find a hyper plane that divides a set of two classes
with largest margin. Extending this formulation of SVM
directly to more than two classes is generally avoided due
to the complex optimization equation it leads to. Instead,
the multi-class SVM problem is dealt with by using an
ensemble of two-class SVMs. There are various strate-
gies to achieve the combination, of which 1vs1, 1vsRest,
and hierarchical classification are the popular methods.
Consider a problem with N classes. In 1vRest strategy,
N two-class classifiers are trained, where the ith classi-

a, e , c , g VS b , d , f , h

a , c VS e , g

a VS c

b , d VS f , h

e VS g b VS d f VS h

a c e g b d f h

Fig. 1. A BHDT that classifies the first 8 alphabets of English.

fier is trained considering the i-th class samples as the
positive class and all the other samples as the negative
class. When an unseen sample is given for testing, the
distance from the separating plane is calculated for each
classifier and the sample is assigned the label of that clas-
sifier for which it is farthest from the separating plane. In
the 1vsRest strategy, a classifier is trained for each pair
of classes, resulting in NC2 classifiers. When a sample is
given for classification, all the NC2 classifiers are used
and a vote is taken from each classifier. The sample is as-
signed the label of the class that has the maximum votes.

Hierarchical decision classifiers divide a complex
problem into simpler ones and tackle the sub-problems
thus created. The results from these sub-problems are in-
tegrated to solve the main problem. Decision Directed
Acyclic Graphs (DDAGs) and Binary Hierarchical De-
cision Trees (BHDTs) are two such popular hierarchical
classification methods, which extend a binary classifier to
multi-class classification using different ensemble strate-
gies.

A Decision Directed Acyclic Graph using SVM has

October 6, 2006 11:32 WSPC - Proceedings Trim Size: 11in x 8.5in 102

2

been used successfully for multi-class classification prob-
lems [3]. The disadvantage with this approach is that the
evaluation time taken for an unseen sample is of O(N)

where N is the number of classes, since the number of
classes is huge for IL-OCR it is advisable to look for a
logarithmic order, which becomes the prime motivation
for exploring Binary Hierarchical Decision Trees.

Hierarchical Classification has been used for char-
acter recognition to considerable success using DDAGs,
BHDTs or a hybrid of both [4,5]. The emphasis of the
existing work has been on designing of DDAGs [3] or on
hybrid techniques [4,5], where at each node in the tree, a
decision is made whether to choose a DDAG or a BHDT,
depending on the complexity of the decision boundary.
Another possible approach is to build regular decision
trees for a particular problem and then replace the clas-
sifier at each node with a large-margin classifier [6] such
as SVMs. However, many issues in designing BHDTs for
applications such as character recognition have not been
examined in sufficient detail.

A BHDT for N classes has N − 1 binary classifiers
arranged as a binary tree, with N leaf nodes, where each
leaf node represents a class. The BHDT is built by com-
bining the classes recursively, two at a time, and a clas-
sifier learnt between the two groups. Figure 1 gives an
example of a BHDT that classifies the first 8 alphabets of
English language.

The running time of algorithms are often described
using the Big-Oh (O(.)) notation, which gives the time
required to solve an instance of the problem in terms of
its size, N [7]. The running times are usually reported for
the worst case and the average case. The average running
time for labeling an unseen sample will be O(log(N)),
while the worst case time complexity is O(N). How-
ever, computing the optimal partition for a BHDT is NP-
Complete [8], that makes problem intractable as the num-
ber of classes increase. Hence, one needs to resort to ap-
proximate solutions in practice.

The primary issues that affect the accuracy and ef-
ficiency of a BHDT that uses SVMs as component clas-
sifier are: i) the use of an appropriate distance measure
in computing the clusters in a BHDT, ii) maintaining the
balance in cluster sizes to improve efficiency, and iii)
dealing with error rates that cascade with the levels of
the tree.

In this paper, we present a new distance measure
(Section 2.1) that intuitively suits the SVM (the binary
classifier to be used at each node of the binary decision
tree) Section 2.2 presents a novel approach to balancing

the tree. Section 2.3 proposes an approach for improving
the accuracy of the BHDT using overlapping partitions at
each node in the tree. Our conclusions and future direc-
tions of work are presented in Section 3.

All the experiments are performed on Telugu OCR
data set with 329 classes. Each segmented character is
scaled to a size of 25x25 pixels maintaining the aspect
ratio and then binarized. Each such character is taken and
the 25X25 matrix is converted to a single row my append-
ing the rows consecutively resulting in a 625-dimensional
feature vector. A linear kernel is used for the SVMs in all
the experiments since the performance was comparable
(or sometimes better) to any polynomial kernel. All the
results are provided in Section 2.4. As a reference point
for the results, we provide the accuracies of various clas-
sifiers such as K-Nearest Neighbor, Artificial Neural Net-
works, and various ensembles of SVMs in Table 1.

Table 1. Comparison of accuracies of various classifiers. The
classifiers considered are K-Nearest Neighbors, Artificial Neu-
ral Networks, and 4 different ensemble strategies for SVMs

Training samples
per class 15 20 25 30

KNN 80.29% 83.87% 87.34% 91.81%
ANN 85.78% 88.45% 90.38% 89.64%

1vsRest 20.31% 22.31% 25.31% 25.97%
1vs1 93.28% 97.91% 98.01% 98.74%

DDAG 91.97% 95.89% 97.52% 98.86%

The results for 1vRest ensemble strategy are particu-
larly bad because of the imbalance in training samples of
the +ve and -ve classes, for example consider the case of
20 samples per class, and we are designing a the i − th

classifier meaning it will be give 20 +ve sample and 6560
-ve samples, because of which +ve class is not repre-
sented properly. Though the 1v1 ensemble strategy gives
a good experimental results, every training sample has to
go through NC2 classifiers for the it to be labeled making
it quadratic in time and impractical.

2. BHDT for IL-OCR using SVMs

In this section, we describe the specific approaches that
we propose to improve the accuracy and efficiency of the
BHDT classifier:

• The use of an appropriate distance measure,
• Improving balance of the BHD Tree
• Dealing with cascading error rates within the

tree.

October 6, 2006 11:32 WSPC - Proceedings Trim Size: 11in x 8.5in 102

3

2.1. Distance Metric for Binary Decision Tree

A BHDT contains a decision tree is that partitions the
classes into two sets at each node. The partitioning is of-
ten achieved by a hierarchical clustering algorithm [8],
and the accuracy of the classifier depends on the clus-
ters generated. Different clustering algorithms such as
k-means, agglomerative clustering and graph-cut based
partitioning can be used to cluster the classes, and they
use a distance measure between samples to achieve the
clustering. A good distance metric should be invariant to
the type of features, and should be robust and easy to
compute on small training sets. It should also be com-
patible with binary classifier used at each node. Com-
monly used distance metrics such as Euclidean distance
does not work well with binary features for cluster-
ing [9]. Other metrics such as Mahalanobis distance and
Kullback-Leibler distance [10] needs a large number of
samples per class for robust estimates. However, the seg-
mented characters used for recognition are binary; and
having a large number of samples per class with already
huge number of classes often makes the training process
prohibitively expensive.

As the clustering algorithm tries to group character
classes, we propose a new distance measure based on the
separability of the classes. To compute the distance mea-
sure, an SVM classifier is trained between each pair of
classes. The margin of the classifier for a class pair is
used as the distance between the two classes. We use the
single link clustering algorithm with the above distance
metric to build the tree. This clustering algorithm con-
siders all classes to be different clusters and merges the
nearest classes and continues the process till two clusters
are left [2].

Fig. 2. Each row contains a character cluster that is placed near the
leaves by the proposed clustering scheme. Note the similarity in shapes.

Since margin can be used as a measure of classifi-
ability, the classes at the leaf nodes should be those that
are most difficult to classify and this observation has been

consistent with our experiments (See Fig 2). The results
on Telugu OCR data set when the proposed metric is used
as the distance measure in comparison with Euclidean
distance are provided in Section 2.4.

2.2. Balanced BHDTs (BBHDT)

A balanced tree can bring down the bound on worst case
time complexity from O(N) to O(logN). This can con-
siderably increase the speed of classification in large class
problems such as IL-OCR. We present an algorithm that
balances the tree with only minimal reduction in accu-
racy. Let P (ωi) be the apriori probability for the class
ωi ∈ Ω and dxi be the distance from the current node,
x, its successor, corresponding to class ωi. Each node x

is given a weight Wx =
∑

i∈subtree(x) dxi.P (ωi). The
weight of the node is the expected time to classify a sam-
ple that arrives at x. Let the imbalance of a node x be
defined as imBx = |Wx→left child − Wx→right child|.
Let T be the root node of tree that is built using some
clustering algorithm for the given classes. With this no-
tation Algorithm 2.1 describes the balancing procedure,
that balances the tree in a recursive fashion. The idea is
to rectify the imbalance at the node, by pushing the clas-
sifier at x to a lower position in the heavier subtree.

Algorithm 2.1 Balance Tree(T , δ)
1: if T = leafnode then
2: return T

3: end if
4: Balance Tree(T → left child, δ)
5: Balance Tree(T → right child, δ)
6: if imBT > δ then
7: T ′ = push(T)

8: if imBT ′ < imBT then
9: T = T ′

10: updateWeigth(T)
11: end if
12: end if

Let Cmax denote the child of node C that has the
maximum weight and Cmin child with the minimum
weight. push operation is defined in Algorithm 2.2 using
this notation. Figure 3 shows an illustration of the push
operation and the balance change that results.

The algorithm first balances the left and right chil-
dren at each node and then calculates the imbalance. If
the imbalance is greater than δ, a parameter set by the
user, the operation push takes place. push is committed

October 6, 2006 11:32 WSPC - Proceedings Trim Size: 11in x 8.5in 102

4

Algorithm 2.2 push (T)
1: T ′ = T

2: T = Tmax

3: tmp = Tmaxmin

4: Tmaxmin
= T ′

5: T ′

max = tmp

1

4 5

6

2 3

7

1

2

4

6 7 5 3

Fig. 3. Push operation: The darker nodes represent the roots of heavier
subtrees. Note that the overall imbalance is reduced after the push.

only if the imbalance that is created after the push oper-
ation is lesser than that of the imbalance present before.
push operation also ensures that the natural clustering is
not disturbed if the value of imbalance is large. The accu-
racies before and after balancing the decision tree using
the above algorithm are reported in Section 2.4

2.3. Overlapping BHDT (OBHDT)

One of the reasons for the lower accuracy of BHDT when
compared to DDAG is the presence of overlapping clus-
ters at certain nodes in the BHDT. We now present an
algorithm that takes this overlap into consideration, and
modifies a BHDT to improve its accuracy. When classi-
fiers are designed between two large clusters of classes,
the accuracy often suffers as some classes will overlap
the cluster decision boundaries. To get around this prob-
lem, we introduce the overlapping subset of classes into
both the clusters. This will postpone the classification
of such classes until the clusters are smaller and more
manageable. The algorithm builds on the already existing
BHDT. We use an evaluation set to identify the nodes at
which misclassifications occur. Algorithm 2.3 shows how
to build the OBHDT.

The parameter τ controls the overlap at which we
decide to add a class to both the clusters at a node. The
results of OBHDT algorithm in comparison to the results
of using a DDAG and BHDT on Telugu OCR data set are
presented Section 2.4.

Algorithm 2.3 Build OBHDT(T)
1: for each class ωi do
2: Let t′ be the first node at which ωi gets misclassi-

fied
3: pushclass(t′,ωi)
4: end for

Algorithm 2.4 pushclass(T, ωi)
1: if T is leafnode with class ωx then
2: build classifier ωi v ωx at T

3: return
4: end if
5: if above τ% of samples of ωi fall to x child then
6: pushclass(T → x child, ωi)
7: else
8: pushclass(T → left child, ωi)
9: pushclass(T → right child, ωi)

10: end if

2.4. Experimental Results

In this section we present the results of various algo-
rithms and experiments done on the Telugu OCR data set.
Telugu language script has 329 character classes, which
makes it challenging for us to classify and correctly, label
the unseen data.

Table 2 shows the improvement of classification
when the margin as specified in section 2.1 between the
classes is used as a distance measure to partition the data
set as opposed to Euclidean distance. Mahalanobis dis-
tance based metric was not able to give sufficient separa-
tion between clusters for the SVM classifier to converge.

Table 2. Comparison of accuracies with different distance met-
rics used for clustering.

Training samples
per class 15 20 25 30

Euclidean distance 80.04% 83.27% 84.82% 86.95%
Margin 87.70% 89.27% 92.78% 96.30%

Table 3 gives the accuracies and time taken, which
is measured as the weight of the root node before and
after applying the Balance Tree Algorithm 2.1. Since we
don’t have any apriori information about the data we con-
sidered all are equally probable, so the value of P (wi) is
made 1/n∀i to calculate the weight at each node as de-
fined in Section 2.2. The column, time, specified in the

October 6, 2006 11:32 WSPC - Proceedings Trim Size: 11in x 8.5in 102

5

table 3 is the weight (calculated according to the formula
in Section 2.2)of the root node of the BHDT, which is
the expected number of classifications each sample might
take.

Table 3. Accuracy(acc) and time taken before and after applying the bal-
ance tree algorithm.

Train.
samples 20 25 30

acc time acc time acc time

BHDT 89.27% 30.32 92.78% 32.25 96.30% 32.01
BBHDT 90.03% 23.37 91.31% 25.21 95.71% 23.04

Table 4 shows the improvement in accuracy of the
overlapped version of BHDT over the regular BHDT,
while maintaining the efficiency. The value of τ in Al-
gorithm 2.3is set to 75% for the experiment and the time
taken in the case of OBHDT was generated using a test
set with 10 samples per class, and noting down the aver-
age number of classifications.

Table 4. Comparison of accuracies and time taken for the various en-
semble of SVM classifiers.

Training samples
per class 15 20 25 30 time

DDAG 91.97% 95.89% 97.52% 98.86% 328
BHDT 87.70% 89.27% 92.78% 96.30% 32

OBHDT 91.34% 96.11% 98.05% 98.91% 34.5

Table 5 shows the performance of the BHDT clas-
sifier on various datasets chosen from The UCI machine
learning dataset repository. The datasets that were cho-
sen had larger number of classes, to demonstrate the abil-
ity of the proposed classifier design algorithm. Note that
the classifier under comparison is the non-overlapping
BHDT, and the accuracies can be further improved by
considering the overlapping version, at the cost of a slight
increase in classification time.

Table 5. Performance comparison with popular classi-
fiers on various datasets.

Classifier
Dataset ANN KNN DDAG BHDT

optdigits 89.76% 93.43% 95.46% 95.53%
pendigits 90.34% 97.74% 96.32% 97.01%

glass 55.65% 76.47% 80.41% 81.31%
yeast 73.35% 48.36% 76.01% 75.89%

3. Conclusions and Future Work

We note that a hierarchical classifier system performs bet-
ter when separability(margin) is used as the distance met-
ric for partitioning the data sets. An overlapping parti-
tioning scheme is proposed that increases the accuracy of
a BHDT, with only minor loss of efficiency. The result-
ing classifier performs better than DDAGs, while being
an order of magnitude smaller in both memory footprint
as well as time taken for classification. Further increase
in the efficiency of the classifier is obtained using a bal-
ancing algorithm. This design suits the large class classi-
fication problems such as OCRs, and it can be applied to
other problems as well.

One could combine balancing with the clustering al-
gorithm to directly generate more balanced clusters, that
could possibly result in efficient classifiers of higher ac-
curacy.

References
1. J.C.Burges , A Tutorial on Support Vector Machines for

Pattern Recognition , Datamining and Knowledge Discov-
ery vol 2, 121–167 (1998)

2. R.Sibson , SLINK: An optimally efficient algorithm for the
single-link clustering method , The Computer Journal vol
16, 30–34 (1973)

3. John.C.Platt,Nello Cristainini , Large Margin DAGs for
multi class classification Advances in Neural Information
Processing Systems vol 12, 547–553 (2000).

4. M.N.S.S.K Pavan Kumar, C.V. Jawahar , Design of Hierar-
chical Classifier with Hybrid Architectures PReMI , 276–
279 (2005)

5. M.N.S.S.K. Pavan Kumar, C.V. Jawahar, Configurable
Hybrid Architectures for Character Recognition Applica-
tions International Conference on Document Analysis and
Recognition vol 1, 1199–1203 (2005)

6. D. Wu, K.P. Bennet, N. Christianini, and J.S. Taylor, En-
larging the Margins in Perceptron Decision Trees Machine
Learning vol 41, 295–313 (2000)

7. T.H. Cormen, C.E. Leiserson, R.L. Rivest, C.Stein, Intro-
duction to Algorithms, MIT Press and McGraw-Hill 2nd
ed., (2001)

8. L.Hyafil and R.L.Rivest , Constructing optimal binary tree
is NP-Complete , Information Processing Letters vol 5,
15–17 (1976).

9. Volkan Vural, Jennifer G.Dy, A Hierarchical Method for
Multi-Class Support Vector Machines International Con-
ference on Machine Learning vol 69, 105 (2004)

10. Yangchi Chen, Melba M.Crawford, Joydeep Ghosh , In-
tegrating Support Vector Machines in a Hierarchical Out-
put Space Decomposition Framework IEEE International
Geoscience and Remote Sensing Symposium vol-2, 949-
952 (2004)

