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Figure 1: Example frames from a multi-person conversation video (frst column) and the corresponding saliency (second 
column). ViNet is a visual-only saliency prediction model, and AViNet is an audio-visual saliency prediction model. AViNet gives 
better predictions in this example. On the frst refection, it appears that audio plays a key role. However, when performing 
inference with zero audio [AViNet-0] and random audio [AViNet-R], the output predictions are identical. Clearly, the audio 
is obsolete at inference. Our work fnds that the audio branch may merely act as a regularizer and motivates a review of 
multi-modal interaction in audio-visual saliency prediction models. 

ABSTRACT 
Despite existing works of Audio-Visual Saliency Prediction (AVSP) 
models claiming to achieve promising results by fusing audio modal-
ity over visual-only models, these models fail to leverage audio 
information. In this paper, we investigate the relevance of audio 
cues in conjunction with the visual ones and conduct extensive 
analysis by employing well-established audio modules and fusion 
techniques from diverse correlated audio-visual tasks. Our analysis 
on ten diverse saliency datasets suggests that none of the methods 
worked for incorporating audio. Furthermore, we bring to light, 
why AVSP models show a gain in performance over visual-only 
models, though the audio branch is agnostic at inference. Our work 
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questions the role of audio in current deep AVSP models and moti-
vates the community to a clear avenue for reconsideration of the 
complex architectures by demonstrating that simpler alternatives 
work equally well. 

CCS CONCEPTS 
• Multi-Modal Learning → Saliency Prediction; • Human Vi-
sual System → Attention Mechanism. 

KEYWORDS 
Human Visual Attention; Saliency Prediction; Multi-modal Learn-
ing 

ACM Reference Format: 
Ritvik Agrawal, Shreyank Jyoti, Rohit Girmaji, Sarath Sivaprasad, and Vineet 
Gandhi. 2022. Does Audio help in deep Audio-Visual Saliency prediction 
models?. In INTERNATIONAL CONFERENCE ON MULTIMODAL INTERAC-
TION (ICMI ’22), November 7–11, 2022, Bengaluru, India. ACM, New York, 
NY, USA, 9 pages. https://doi.org/10.1145/3536221.3556625 

1 INTRODUCTION 
The human visual attention (HVA) mechanism facilitates diverse 
information processing in our surroundings by localizing the most 
prominent (salient) region[17]. This fundamental ability empowers 
primates to rapidly analyze/interpret the complex surroundings 
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by locating and devoting the focus only on sub-regions of interest 
[19]. Mimicking this ability in machines is a fundamental research 
problem [2] and is actively pursued in the domains of computer 
vision, cognitive science, robotics, and human-computer interac-
tion. A primary way to address the problem is to frst compile 
ground truth regarding where viewers gaze in the scene via eye-
tracking hardware, train machine learning models, and perform 
prediction on novel unseen video computationally. This task is com-
monly referred as saliency prediction and is shown to be efective 
in many downstream applications such as video surveillance [54], 
cinematic editing [32], video captioning [34], virtual reality [42], 
video compression[16], human-robot interaction [14, 26, 41], etc., 
owing to it’s ability to prioritize the video information across space 
and time. 

Initial eforts on the problem of video saliency predictions were 
limited to visual-only input. For instance, larger datasets like 
DHF1K [51] discard audio information during ground truth col-
lection and ask users to look at silent videos. However, discarding 
audio information contrasts with our real-life behavior, where we 
simultaneously perceive visual and audio modalities. Psycholog-
ical studies [36] , [50] indicate the impact of audio in directing 
the human gaze. To understand the role of audio, comprehensive 
eye-tracking analysis [11, 28] demonstrates that while observing a 
dynamic scene, the sound will infuence HVA. Audio with distinct 
categories, e.g., object sound, music, human voice, surrounding 
noise, etc., have diferent degrees of infuence [44]. 

A series of audio-visual saliency prediction methods followed. 
Tavakoli et al. [47] proposed an audio-visual deep learning model 
(DAVE), where the audio and visual features are both encoded using 
a 3D Resnet, concatenated and sent to a decoder. Min et al. [30] 
predicts audio saliency by cannonical correlation of visual and audio 
features and then fuses it with deep learning-based saliency models. 
STAViS [49] extends the SUSiNet’s [21] visual saliency model and 
investigates three diferent ways to fuse the audio modality. Some 
recent eforts, have focused on face saliency, i.e. predicting the 
salient face in multi face videos. Liu et al. [22] concatenates features 
from three diferent streams (one for faces, one for visual embedding 
and one for audio) and decodes saliency maps using it. In [38] 
they further extend their idea by bifurcating visual encoder into 
motion and textual features and also adding a loss function for 
sound localization. These works endorse audio as a signifcant 
contributing cue by reporting gains over visual-only modality. 

In this work, we revisit these methods in audio-visual saliency 
and make three major observations: 

(1) We fnd that a visual-only baseline either outperforms or pro-
vides comparable performance to the state-of-the-art audio-
visual saliency prediction methods. 

(2) We observe that the audio branch is obsolete at inference 
i.e., the resulting saliency maps are the same irrespective 
of sending zero audio, random audio, or the actual audio 
corresponding to the video (Figure 1). We fnd that the obser-
vation is true for diferent fusion methodologies presented 
in the prior art. 

(3) Now, the interesting question is that if audio does not play 
any role, why does adding the audio branch lead to per-
formance gains, at least on some datasets, as reported in 

previous eforts. Based on our experiments, we hypothesize 
that the additional branch acts as a regularizer, and the ac-
tual audio data has no role in performance improvement. 
We observe similar performance gains while sending ran-
domly shufed audio during training, which is unrelated 
to the video. To our surprise, a similar performance gain is 
observed by training an AVSP model on a visual-only dataset 
with random audio. 

We perform comprehensive experiments to support the claims 
mentioned above. Our experiments comprise ten diferent datasets, 
four diferent fusion mechanisms, three diferent audio backbones, 
and varying experimental setups (no audio, real audio, zero audio, 
randomly shufed audio, random vectors as audio). We would like 
to emphasize that we are not claiming any architectural novelty 
in this work; the goal is primarily to understand the multi-modal 
learning and provide essential cues that will help better design and 
evaluation of future audio-visual saliency prediction models. Our 
work questions the role of audio in current end-to-end trained deep 
learning saliency prediction methods. It motivates reconsideration 
of the complex architectures for audio-visual saliency prediction 
by demonstrating that the simpler alternatives work equally well. 
It encourages a more rigorous evaluation of the saliency prediction 
methods in the multi-modal setting. And fnally, it highlights the 
limitations of the current eforts and motivates exploration of ways 
to actually exploit the audio information for the task of saliency 
prediction. 

2 RELATED WORKS 

2.1 The role of audio in HVA 
It is evident that audio matters in Human Visual Attention (HVA). 
Papai et al. [35] points everyday examples like stopping in our 
tracks at the sudden car honk while absentmindedly crossing a 
street. However, is it still crucial while watching a video with a 
monaural audio? Numerous studies suggest that it is. Chen et al. [6] 
captured eye gaze on images with no audio, coherent audio and 
incoherent audio. They found that coherent audio information is 
an important cue for enhancing the feature-specifc response to the 
target object. Eye tracking experiments in previous works [9, 48] 
also verify the impact of audio signal on human attention. The 
work in [10, 24] fnds noticeable diferences in spatial distributions 
of visual attention on same video content, when viewed with and 
without audio. Eye tracking experiments by Coutrot et al. [10] 
further suggest that in conversational video, increasing saliency of 
speakers’ face greatly improves the model prediction. Other similar 
studies [11, 12, 43] also confrm the impact of soundtrack on gaze 
while watching videos. Our work investigates if a similar behaviour 
is observed in deep learning based saliency prediction models. 

2.2 Computational Saliency Prediction 
Initial deep learning based saliency prediction methods were limited 
to visual information. The methods can be largely classifed in two 
categories. (a) The LSTM based models, which build on image-based 
saliency and aggregate frame-wise prediction using an LSTM [13, 
52]. (b) The 3Dconv based models, which rely on action detection 
networks as their backbone and primarily use 3D convolutional 
layers in the encoder and the decoder [18, 27]. Needless to say, the 
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architectures borrow common ideas from deep learning research 
like using features from diferent hierarchies, skip connections, 
transfer learning, multi-branch architectures, UNet like encoder-
decoder [40] etc. Most methods, frst train the saliency prediction 
model using DHF1K dataset and then fne tune it on other datasets. 
The current state of the art landscape is dominated by the 3DConv 
based architectures. We rely primarily on the ViNet [18] model for 
our experiments, owing to its simplicity and decent performance. 

The Audio-Visual saliency prediction methods fuse the visual 
branch with audio information. Several fusion methodologies have 
been studied in prior art. Tavakoli et al. [47] used a 3D Resnet to 
encode both visual and audio information. They employ a simple 
concatenation operation on the encoded features. Chen et al. [5] 
also use concatenation operations, while using features from dif-
ferent visual hierarchies. STAViS [49] fuses the audio features onto 
the SUSiNet [21] visual encoder. They employ three diferent fusion 
methodologies namely cosine similarity, weighted inner product 
and bilinear transformation. Zhu et al. [55] employ a linear weighted 
fusion of audio and visual saliency maps. The audio saliency maps 
are computed using canonical correlation of visual and audio fea-
tures. Jain et al. [18] experiment with similar fusion methods to [21] 
on the ViNet backbone. 

Some saliency prediction eforts have focused on conversational 
multi-face videos. Liu et al. [22, 38] employ multi-stream end-to-end 
trainable deep learning architectures. They propose a large scale 
MVVA dataset allowing efcient training. Several deep learning 
methods have also been explored [18, 22, 47]. 

Most of the aforementioned audio-visual saliency prediction 
methods claim that fusing audio leads to noticeable performance 
gains. Jain et al. [18] were the frst to question this claim, by showing 
that an optimally trained visual backbone, can match the perfor-
mance of audio-visual methods. They demonstrate that the perfor-
mance gains by adding audio are not statistically signifcant. We 
make a more comprehensive efort in this direction, performing 
experiments with diferent audio backbones and a variety of fusion 
methodologies. Our work also provides insights on why perfor-
mance gains are observed by fusing audio in training, their role at 
inference and a comparison to other regularization techniques. 

3 METHODOLOGY 
We analyze the role of audio in existing state-of-the-art saliency 
prediction models (Section 3.1) and validate the efcacy of audio 
branch. We then evaluate the efectiveness of diferent encoding 
(Section 3.2) and fusing strategies (Section 3.3) towards the same. 
Furthermore, we corroborate the underlying cause for incremental 
gains in all existing AVSP models. We hypothesize that the audio 
module acts as a regularizer (Section 3.4) and produce experimental 
validation for the same. 

3.1 Audio-Visual Saliency models 
Existing deep audio-visual saliency models can be interpreted as 
an encoder-decoder framework (Fig. 2). 

For this study, we choose STAViS[49] and AViNet[18] networks 
that fuse spatio-temporal visual and auditory information to obtain 
a fnal saliency map. 

3.1.1 STAViS : . We train STAViS [49] that extends the SusiNet 
[21] visual saliency model by fusing an audio modality. The visual 
branch consists of spatio-temporal module based on 3D-ResNet 
Blocks pre-trained on Kinetics-400 dataset [4]. This is followed by 
a Deeply Supervised Attention Module (DSAM), i.e., feature-wise 
multiplication of the output of each block and the attention map. 

In parallel, semantically rich audio features are obtained using 
SoundNet [1] , a state-of-the-art CNN for acoustic event classifca-
tion, and then combined with visual encoder feature map to obtain 
a fnal saliency map. The pre-processing is done similar to [49]. 

3.1.2 AViNet : We train AViNet, a U-Net like encoder-decoder net-
work with a visual branch based on a S3D [53] backbone pre-trained 
on Kinetics-400 action recognition dataset [4]. Features from multi-
ple levels are upsampled with trilinear interpolation and combined 
along the temporal channel. Inspired by STAViS, the SoundNet[1] 
module is used as an auditory feature extractor. The audio features 
are fused with visual features by simple concatenation and Bilinear 
techniques. Inputs are processed similar to [18]. 

3.2 Audio Modules 
To analyze the role of audio, we perform ablation across three dif-
ferent audio modules, i.e. SoundNet[1], VGG-Vox[7] and AVID[33]. 
These modules have shown signifcant performance in diverse cor-
related audio-visual tasks. 

3.2.1 SoundNet : For sound representation, we employ 
SoundNet[1] to leverage visual and sound synchronized informa-
tion in the videos. It uses a student-teacher model that transfers 
discriminative visual information from well-established visual 
recognition models, employing a massive source of unlabelled 
video as a bridge. High-level feature embeddings are then extracted 
from the seventh layer of SoundNet with dimension of 1024 × 3, 
followed by temporal max-pooling layer. This module is fne-tuned 
by end-to-end training for our AVSP task. 

3.2.2 VGG-Vox : We also employ VGG-Vox[7] as an audio module, 
which is a modifed version of a speaker recognition network VGG-
M. The input to this network is a short-term amplitude spectrogram 
extracted from raw audio (with same duration as of input video) 
using a 512-point FFT, resulting in a spectrogram of size 512 × 300. 
Each frequency bin of the spectrogram is normalized and fed to 
the audio module, which aggregates frame-level feature vectors 
to obtain a fxed-length utterance-level embedding of dimension 
4096. The VGG-Vox model pretrained on Voxceleb2[7] dataset is 
fne-tuned for our task by end-to-end training of AVSP model. 

3.2.3 AVID : . Furthermore to verify the role of audio in the afore-
mentioned task, we employ AVID[33] module to learn audio repre-
sentations by using contrastive learning for cross-modal discrimi-
nation between the two modalities in a self-supervised manner. 

Audio is processed by sampling with a time-frame of input video 
sequence, and a log spectrogram of size 100 × 129 is obtained where 
100 is the number of time steps, and 129 is the number of frequency 
bands choosen in our case. This spectrogram is then passed through 
9 layers of 2D ConvNet and projected to 128 dimensions using a 
multi-layer perceptron (MLP) composed of 3 fully connected layers 
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Figure 2: Audio-Visual Saliency Prediction model in general. 

with 512 hidden units. We fne-tune the pretrained AVID model by 
end-to-end training of resulting AVSP model. 

3.3 Fusion of Multi-Modalities 
We exploit diferent fusion techniques for our analysis, owing to 
their ability to generalize well across multiple domains, thereby 
leveraging multi-modal information. 

3.3.1 Bi-linear Fusion and Concatenation : Inspired by the recent 
works of audio-visual fusion for Saliency, we apply bi-linear fu-
sion and concatenation techniques used in [18, 49]. Bilinear fusion 
method captures the pairwise interactions across the feature di-
mensions. 

We also performed our experiments with a simple concatenation 
technique used previously [18, 49]. To match the dimensions for 
concatenation , audio features are repeated and combined based 
on the number of channels. This fusion is followed by a 1 × 1 
convolution to reduce the channel dimension. 

3.3.2 Self-Cross Atention : Instantaneous sound content and ac-
tivities in the scene may not always be precisely time-aligned, 
thereby causing the two modalities to possess distinct dynamics. 
Motivated by the works of Tao et al.[46], proposed initially for 
speaker detection, we employ a cross-attention and self-attention 
module to capture the dynamic visual-audio interaction along the 
temporal dimension. Attention based mechanism synergistically 
combines the two modalities. Cross attention ensures that attention 
features from one modality are used to highlight the features of 
other modality , thereby capturing the inter-modality interaction. 
Subsequently, self-attention is applied to capture long-term tem-
poral dependencies, where the attention mask highlights its own 
spectral features. 

3.3.3 RNA Loss : Though multiple modalities may provide ad-
ditional information, CNNs’ ability to efectively extract valuable 
information from them is limited due to one modality being "priv-
ileged" over the other during training, limiting its generalization 
ability. To this end, Planamente et al. [37] brought into light the 
problem of "norm unbalance" and reported L2-norm as the met-
ric to measure the unbalance between the information content of 
the training modalities. Each modality can be represented as a hy-
persphere with a mean feature norm as its radius. In the case of 
Audio-Visual modality, the objective is to minimize the diference 
between the radius of respective norms forcing them to lie on a 
hypersphere of a fxed radius. Planamente et al. [37] proposed a 
Relative Norm Alignment (RNA) loss that aims to align the mean 

feature norms of the two modalities. RNA loss can be defned as : � 
E[ℎ(� � )] 

�2 
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der to induce an optimal equilibrium between the two embeddings, 
the dividend/divisor structure is adjusted to encourage a relative 
balance between the norm of the two modalities. Furthermore, the 
square of the diference pushes the network to take larger steps 
resulting in faster convergence. 

3.4 Regularization over Visual-Only Models 
Dropout [45] is a regularization technique to ameliorate over-ftting 
in neural networks. Specifcally, during the training phase, dropout 
randomly discards nodes with a given probability. In this way, the 
network can be hypothesized as an ensemble of small sub-networks, 
thus achieving a good regularization efect. For our visual only 
model, we use high dropout of 85%. (value of Dropout is decided 
empirically based on Table 4) 

4 EXPERIMENT 

4.1 Dataset 
We carry out the tests and comparisons on three most popular 
visual-only saliency datasets-DHF1K, Hollywood-2, and UCF Sports 
; six audio-visual saliency datasets - AVAD, Coutrot1, Coutrot2, 
DIEM, ETMD, SumMe ; two multi-face datasets- Coutrot2, MVVA. 

4.1.1 DHF1K. [51] is a large dataset with diverse content and 
variable-length comprising 1000 videos split into 600, 100, and 
300 as training, validation, and testing sets. Each video is 30 fps 
with 640x360 spatial resolution, and eye-tracking data annotated 
by 17 observers . The dataset is mainly classifed into 7 categories: 
humans (daily activities, sports, social activities, and art), animals, 
artifacts, and scenery. The ground truths of testing videos are held 
out for evaluation on the benchmark website. 

4.1.2 Hollywood-2. [25] is the largest dataset in terms of the num-
ber of videos, consisting of 1707 action videos from the Hollywood-2 
action recognition dataset with eye-tracking data annotated by 19 
observers. The dataset has short video sequences from a set of 69 
Hollywood movies containing 12 diferent human action classes, 
ranging from answering the phone, eating, driving, running, etc. 
We use the standard split of 823 training videos and 884 test videos. 
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Figure 3: Diferent Fusion Techniques 

4.1.3 UCF Sports. [39] dataset consists of a set of actions col-
lected from various sports which are typically featured on broadcast 
television channels. The dataset includes a total of 150 sequences 
with a resolution of 720 x 480. It includes 10 actions, i.e., diving, 
golf swing, kicking, lifting, riding a horse, running, skateboarding, 
swing-bench, swing-side, and walking. We use a standard split with 
103 videos for training and 47 videos for testing. 

4.1.4 DIEM. [31] consists of 84 videos with varying genres based 
on g advertisements, documentaries, game trailers, movie trailers, 
music videos, news clips, and time-lapse footage. The eye-tracking 
data are annotated by about 50 observers in a free-viewing manner. 
We use a standard split with 20 videos for testing and the remaining 
videos for training. 

4.1.5 Coutrot. [9, 23] databases are divided into Coutrot1 and 
Coutrot2. Coutrot1 contains 60 clips with dynamic natural scenes 
of four visual categories: one/several moving objects, landscapes, 
and faces. Coutrot2 contains 15 clips of 4 persons in a meeting. 
Videos have a resolution of 720 x 576 pixels and a frame rate of 25. 
The corresponding eye-tracking data are annotated by 70 observers. 

4.1.6 SumMe. [15] dataset contains 25 unstructured videos, i.e., 
mostly user-made videos and their corresponding multiple-human 
created summaries, which were acquired in a controlled psychologi-
cal experiment. The corresponding eye-tracking data are annotated 
by 10 observers. 

4.1.7 AVAD. [29] dataset comprises 45 short clips of 5-10 sec dura-
tion with several action scenes, like dancing, guitar playing, birds 
singing, etc. The corresponding eye-tracking data are annotated by 
16 observers. 

4.1.8 ETMD. [20] dataset consists of 12 videos from 6 diferent Hol-
lywood movies. The corresponding eye-tracking data are annotated 
by 10 observers. 

4.1.9 MVVA. [22] dataset consists of 300 dubbed Multiple-face 
Videos. The corresponding eye-tracking data are annotated by 34 
observers. During the eye-tracking experiment, both video and 
audio were presented to the annotators. A random split of 240 
videos for training and 60 videos for testing is used. 

4.2 Training procedure 
For training AViNet, a similar training procedure is incorporated, 
as discussed by Jain et al.[18]. 32 consecutive frames are randomly 
selected from each clip of the dataset with their corresponding 
audio stream. Each frame is resized to 224X384 and trained with a 
batch size of 8. The optimizer used is Adam with an initial learning 
rate of 1e-4 and Kullback-Leibler divergence (KLDiv) as the loss 
function. The network is initially trained on DHF1K dataset with 
corresponding validation data used for early stopping. The network 
with pre-trained weights of DHF1K dataset is fne-tuned for all 
other datasets with their respective validation datasets being used 
for early stopping. 
For a fair comparison, the training procedure of STAViS is adopted 
as discussed in [49]. The network takes 16 consecutive frames as 
input with a resolution of 112 X 112 and is trained with a batch size 
of 128 with their corresponding audio stream. A random fipping 
data augmentation technique is applied during training. The opti-
mizer used is SGD with a momentum of 0.9, dampening factor of 0.9, 
weight decay of 1e-5, and learning rate set to 1e-2. The loss function 
is a weighted combination of cross-entropy loss, linear correlation 
coefcient (CC), and normalized scanpath saliency(NSS). 

4.3 Evaluation Metrics 
We evaluated our task on distribution-based and location-based met-
rics [3]. Distribution-based metrics compute the similarity between 
predicted and ground truth distributions (assuming that the ground 
truth fxation locations are sampled from an underlying probability 
distribution). We chose KLDiv, Similarity(SIM), and Correlation(CC) 
for distribution-based analysis. The location-based metrics measure 
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the accuracy of saliency models at predicting discrete fxation loca-
tions. NSS and AUC metrics are chosen as location-based metrics 
in our analysis. 

5 RESULTS AND DISCUSSIONS 
Extensive experiments are performed to examine the role of audio 
in current AVSP models. The study is carried out on ten diferent 
audio-visual saliency datasets. We also attempt to investigate the 
cause for incremental gains in current AVSP models over the visual-
only models. 

5.1 Audio-visual Dataset 
5.1.1 Role of Audio in SOTA models : To analyse the infuence of 
audio in AVSP models, we conduct a simple experiment by setting 
the sound signal to zero (a silent sound), and random (a random 
noise) at inference. From Table 1, we fnd that the model inferred 
with diferent sound signals gives notably similar performance, 
thus showing an agnostic behaviour of both the SOTA models with 
audio on all the audio visual datasets. This behaviour suggest that 
the SOTA models are unable to utilize audio module at it’s best 
and limits the performance of AVSP models. To this end, we tried 
diferent techniques to incorporate audio in a better way. We choose 
ViNet (being an outperforming model over STAViS) as base model 
for all our further experiments. 

5.1.2 Analysis of Diferent Audio Modules : Audio module added 
to ViNet might not be able to capture contrasting features to video 
module. We tried some SOTA audio modules that showcased high 
performance on audio-visual tasks i.e. sound source localization[1], 
active speaker detection[46], audio-visual objects learning[33], etc. 
Table ?? shows the performance on diferent audio modules. We 
observe a similar performance across all, thus limiting the learning 
ability of the network to some extent. To this end, we adopt diferent 
fusion techniques to integrate the audio and visual features in a 
better way. 

5.1.3 Analysis of Diferent Fusion Techniques : In multi-modal 
networks, the fusion technique plays a major role. We adopt difer-
ent fusion techniques that have shown encouraging performance 
in diferent multi-modal scenarios. Table 2 compares the efect of 
diferent fusion techniques on network’s performance. A minimal-
istic jitter in results suggests that diferent fusion techniques fail 
to leverage audio in AVSP models. We believe that one possible 
reason is that audio information is futile to the video saliency with 
the existing datasets. Furthermore, the other possible reason could 
be that the visual network is dominant. This dominance problem 
might arise because of norm unbalance between the two modalities, 
so that modality with greater feature norm (visual in our case) gets 
privileged while penalizing the other (audio). To this end, we tried 
incorporating RNA loss[37] to bring out norm balance and leverage 
audio in a better way. Table 3 shows the norm values before and 
after applying RNA Loss. The balanced norm suggests that empow-
ering the audio features doesn’t beneft the task and visual features 
are rich enough to predict the fnal saliency. 

5.1.4 Regularization by Audio branch : From above experiments 
we observe, while audio visual models achieve outstanding per-
formance compared to visual only models there still remain an 

important issue, that is lacking the utilization of audio features. Au-
dio being agnostic, suggest that the AV model somehow empowers 
the potential capacity of the visual only model. We believe that one 
possible reason is that the visual only models are not optimal and a 
simple regularization technique on Visual model can help to learn 
the saliency of similar or higher precision. Table 4 illustrates the 
results on varying dropout and using dropout of 0.85 gave better 
results on which all our further analysis is carried out. The com-
parison of visual and audio visual models with regularized visual 
model are presented in Table 5. The regularized model is able to 
recover most of the underlying performance on current datasets. 
The results shows a similar behaviour in regularized model and 
the audio-visual model with respect to the visual only model. On 
specifc dataset like Coutrot2, where the audio visual model seemed 
to gain signifcant improvement, our results indicates the similar 
signifcant gain by the regularized model. Thus audio visual model 
can be surmised as some form of regularization applied over visual 
only model. 

5.2 Visual Only Datasets 
The above hypothesis is validated by conducting the same set of ex-
periments on visual-only datasets with audio input set to a random 
vector. Table 7 clearly shows that, AViNet shows a similar to better 
performance as compared to ViNet. Particularly in UCF dataset, a 
signifcant gain can be observed, leading to SOTA performance by 
just adding a random audio module. The dropout is further seen 
to inhibit this behaviour. Thus we bring into light that previously 
claimed audio-visual models don’t incorporate audio but end up 
regularizing the visual module. 

6 CONCLUSION 
Our work presents a comprehensive analysis to underline the role 
of audio in current deep AVSP methods. Our experiments clearly 
indicate that visual modality dominates the learning; the current 
models largely ignore the audio information. The observation is 
consistent while using three diferent audio backbones and four 
diferent fusion techniques. The observations contrast with the 
previous methods, which claim audio as a signifcant contributing 
factor. We show the performance gains are a byproduct of improved 
training and the additional audio branch seems to have a regulariz-
ing efect. We show that similar gains are achieved while sending 
random audio during training. 

Our results demonstrate a clear gap between human learning and 
deep learning-based models. Several psycho-visual studies show 
that audio impacts visual attention; however, neural networks seem 
to discard this information. We believe there could be multiple 
reasons behind the fnding. First, neural networks behave diferently 
than humans. For instance, in a multi-person conversation, humans 
exhibit turn-taking behavior. In contrast, networks can process all 
faces (or lip movements) in parallel through the convolution flters. 

Limitations of the dataset could be the second reason for this. For 
instance, if the actions are highly correlated with sound, localizing 
movement/actions can help predict saliency. Similarly, in datasets 
with frontal face conversations, just picking the lip movement can 
help identify the speaker and aid saliency prediction, and audio 
modality might be ignored. Finally, one major limitation of all works 
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Table 1: Comparison of metrics on passing zero and random sound signal. Here [STA-0] and [STA-R] denotes the inference of 
STA on zero and random sound signal respectively. Similarly [AViNet-0] and [AViNet-R] denotes the inference of AViNet on 
zero and random sound signal respectively. 

CC sAUC 
DIEM 
AUC NSS SIM CC sAUC 

Coutrot1 
AUC NSS SIM CC sAUC 

Coutrot2 
AUC NSS SIM 

STAViS(ST) 
STAViS(STA) 
STAViS(STA-0) 
STAViS(STA-R) 

0.567 
0.579 
0.576 
0.576 

0.664 
0.675 
0.673 
0.673 

0.879 
0.883 
0.883 
0.883 

2.190 
2.260 
2.249 
2.250 

0.472 
0.482 
0.484 
0.484 

0.459 
0.472 
0.471 
0.472 

0.576 
0.585 
0.584 
0.584 

0.862 
0.868 
0.867 
0.867 

1.990 
2.110 
2.112 
2.112 

0.384 
0.394 
0.396 
0.396 

0.653 
0.735 
0.731 
0.731 

0.689 
0.710 
0.708 
0.708 

0.941 
0.958 
0.956 
0.956 

4.190 
5.280 
5.242 
5.233 

0.447 
0.511 
0.526 
0.525 

ViNet 
AViNet 
AViNet-0 
AViNet-R 

0.626 
0.632 
0.619 
0.619 

0.723 
0.719 
0.717 
0.717 

0.898 
0.899 
0.897 
0.897 

2.470 
2.530 
2.484 
2.484 

0.483 
0.498 
0.486 
0.486 

0.551 
0.560 
0.558 
0.558 

0.633 
0.635 
0.636 
0.636 

0.886 
0.889 
0.889 
0.889 

2.680 
2.730 
2.727 
2.727 

0.423 
0.425 
0.424 
0.424 

0.724 
0.754 
0.760 
0.760 

0.739 
0.742 
0.748 
0.748 

0.950 
0.951 
0.959 
0.959 

5.610 
5.950 
6.009 
6.010 

0.466 
0.493 
0.494 
0.495 

CC sAUC 
AVAD 
AUC NSS SIM CC sAUC 

ETMD 
AUC NSS SIM CC sAUC 

SumMe 
AUC NSS SIM 

STAViS(ST) 
STAViS(STA) 
STAViS(STA-0) 
STAViS(STA-R) 

0.604 
0.608 
0.606 
0.605 

0.590 
0.593 
0.592 
0.592 

0.915 
0.919 
0.919 
0.919 

3.070 
3.180 
3.166 
3.160 

0.443 
0.457 
0.463 
0.462 

0.560 
0.569 
0.569 
0.569 

0.727 
0.731 
0.731 
0.731 

0.929 
0.931 
0.931 
0.931 

2.840 
2.940 
2.937 
2.936 

0.412 
0.425 
0.431 
0.431 

0.418 
0.422 
0.422 
0.423 

0.647 
0.656 
0.656 
0.656 

0.884 
0.888 
0.888 
0.888 

1.980 
2.040 
2.038 
2.037 

0.332 
0.337 
0.341 
0.340 

ViNet 
AViNet 
AViNet-0 
AViNet-R 

0.694 
0.674 
0.673 
0.673 

0.663 
0.658 
0.659 
0.658 

0.928 
0.927 
0.928 
0.928 

3.820 
3.770 
3.759 
3.760 

0.504 
0.491 
0.490 
0.490 

0.569 
0.571 
0.571 
0.570 

0.736 
0.733 
0.733 
0.733 

0.928 
0.928 
0.928 
0.928 

3.060 
3.080 
3.078 
3.074 

0.409 
0.406 
0.407 
0.407 

0.466 
0.463 
0.459 
0.459 

0.696 
0.692 
0.691 
0.692 

0.898 
0.897 
0.896 
0.896 

2.400 
2.410 
2.386 
2.386 

0.345 
0.343 
0.342 
0.342 

Table 2: Comparison of metrics on AViNet with diferent fusion techniques. Here, [AViNet(B)], [AViNet(C)], [AViNet(A)] 
and [AViNet(RNA)] denotes AViNet with fusion based on bilinear, concatenation, attention based mechanism, and RNA loss 
respectively. 

CC sAUC 
DIEM 
AUC NSS SIM CC sAUC 

Coutrot1 
AUC NSS SIM CC sAUC 

Coutrot2 
AUC NSS SIM 

ViNet 
AViNet(B) 
AViNet(C) 
AViNet(A) 

AViNet(RNA) 

0.626 
0.632 
0.631 
0.6143 
0.621 

0.723 
0.719 
0.720 
0.707 
0.719 

0.898 
0.899 
0.897 
0.897 
0.896 

2.470 
2.530 
2.500 
2.458 
2.470 

0.483 
0.498 
0.497 
0.488 
0.485 

0.551 
0.560 
0.556 
0.552 
0.542 

0.633 
0.635 
0.636 
0.632 
0.624 

0.886 
0.889 
0.887 
0.890 
0.884 

2.680 
2.730 
2.680 
2.700 
2.592 

0.423 
0.425 
0.426 
0.425 
0.413 

0.724 
0.754 
0.753 
0.744 
0.766 

0.739 
0.742 
0.743 
0.739 
0.747 

0.950 
0.951 
0.951 
0.961 
0.961 

5.610 
5.950 
5.810 
5.776 
5.961 

0.466 
0.493 
0.486 
0.479 
0.489 

CC sAUC 
AVAD 
AUC NSS SIM CC sAUC 

ETMD 
AUC NSS SIM CC sAUC 

SumMe 
AUC NSS SIM 

ViNet 
AViNet(B) 
AViNet(C) 
AViNet(A) 

AViNet(RNA) 

0.694 
0.674 
0.683 
0.674 
0.665 

0.663 
0.658 
0.661 
0.659 
0.660 

0.928 
0.927 
0.931 
0.927 
0.928 

3.820 
3.770 
3.740 
3.726 
3.649 

0.504 
0.491 
0.494 
0.490 
0.473 

0.569 
0.571 
0.566 
0.575 
0.565 

0.736 
0.733 
0.737 
0.735 
0.737 

0.928 
0.928 
0.928 
0.929 
0.928 

3.060 
3.080 
3.050 
3.086 
3.032 

0.409 
0.406 
0.404 
0.413 
0.403 

0.466 
0.463 
0.471 
0.462 
0.446 

0.696 
0.692 
0.699 
0.693 
0.686 

0.898 
0.897 
0.899 
0.897 
0.893 

2.400 
2.410 
2.420 
2.400 
2.235 

0.345 
0.343 
0.346 
0.342 
0.331 

Table 3: Mean and standard deviation of feature norm before and after applying RNA Loss 

AViNet with BiLinear Fusion AviNet with RNA Loss 
Audio Video Audio Video 

AVAD 9.5142 ± 4.7232 29.0128 ± 3.9406 11.8473 ± 4.3091 14.2908 ± 2.6662 
Coutrot1 9.3178 ± 4.9157 25.9076 ± 3.3296 11.6736 ± 4.4389 11.9309 ± 2.1535 
Coutrot2 13.5336 ± 1.8181 26.6241 ± 1.3176 15.136 ± 2.1201 12.5556 ± 1.2305 
DIEM 11.4565 ± 3.8720 28.3217 ± 5.4160 13.3933 ± 3.8439 12.5178 ± 2.1789 
ETMD 11.3443 ± 4.1168 27.4783 ± 4.1482 13.4269 ± 3.4984 12.9234 ± 1.712 
SumMe 10.0412 ± 4.6872 27.1688 ± 4.6831 12.7507 ± 4.4734 12.5161 ± 2.5662 

discussed in the paper is that they use monaural audio, and hence 
the directional aspect is discarded. In contrast, the ability of humans 
to sense the direction of the audio signifcantly aids the attention 
mechanism. A future direction [8] could be to curate large-scale 
datasets with directional audio (stereo) and 360-degree videos. The 

monaural audio and limited feld of view can then be simulated 
from such datasets. 

Overall, we believe the experiments presented in this paper will 
help the community refect upon the role of audio in the current 
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Table 4: Results on varying Dropout on Coutrot2 test set. 

STAViS ViNet 
Dropout CC sAUC AUC NSS SIM CC sAUC AUC NSS SIM 

0.80 0.674 0.715 0.952 4.427 0.308 0.735 0.740 0.955 5.761 0.481 
0.85 0.675 0.715 0.955 4.432 0.309 0.740 0.741 0.959 5.777 0.481 
0.90 0.673 0.713 0.948 4.397 0.294 0.733 0.739 0.954 5.748 0.481 

Table 5: Comparison of metrics on the DIEM, Coutrot1, Coutrot2, AVAD, ETMD and SumMe test sets. Here, STAViS(STD) and 
ViNet-D refers to respective regularized models with 85% dropout 

DIEM Coutrot1 Coutrot2 
CC sAUC AUC NSS SIM CC sAUC AUC NSS SIM CC sAUC AUC NSS SIM 

STAViS(ST) 0.566 0.664 0.879 2.190 0.471 0.458 0.576 0.861 1.990 0.384 0.653 0.689 0.940 4.190 0.447 
STAViS(STA) 0.579 0.674 0.883 2.260 0.482 0.472 0.584 0.868 2.110 0.393 0.735 0.710 0.958 5.280 0.511 
STAViS(STD) 0.609 0.693 0.890 2.329 0.406 0.509 0.593 0.876 2.202 0.338 0.675 0.714 0.955 4.432 0.309 

ViNet 0.626 0.723 0.898 2.470 0.483 0.551 0.633 0.886 2.680 0.423 0.724 0.739 0.950 5.610 0.466 
AViNet 0.632 0.719 0.899 2.530 0.498 0.560 0.635 0.889 2.730 0.425 0.754 0.742 0.951 5.950 0.493 
ViNet-D 0.637 0.724 0.902 2.559 0.498 0.561 0.634 0.891 2.736 0.430 0.740 0.741 0.959 5.777 0.481 

AVAD ETMD SumMe 
CC sAUC AUC NSS SIM CC sAUC AUC NSS SIM CC sAUC AUC NSS SIM 

STAViS(ST) 0.604 0.59 0.915 3.070 0.443 0.560 0.727 0.929 2.840 0.412 0.418 0.647 0.884 1.980 0.332 
STAViS(STA) 0.608 0.593 0.919 3.180 0.457 0.569 0.731 0.931 2.940 0.425 0.422 0.656 0.888 2.040 0.337 
STAViS(STD) 0.609 0.600 0.919 3.078 0.345 0.562 0.744 0.929 2.835 0.314 0.443 0.676 0.893 2.135 0.274 

ViNet 0.694 0.663 0.928 3.820 0.504 0.569 0.736 0.928 3.060 0.409 0.466 0.696 0.898 2.400 0.345 
AViNet 0.674 0.658 0.927 3.770 0.491 0.571 0.733 0.928 3.080 0.406 0.463 0.692 0.897 2.410 0.343 
ViNet-D 0.682 0.661 0.929 3.835 0.497 0.578 0.740 0.930 3.128 0.416 0.467 0.700 0.899 2.425 0.347 

Table 6: Results of all the experiments discussed, on a recently proposed large-scale multi-face saliency dataset - MVVA[22]. A 
similar behaviour can be observed. 

MVVA 
CC SIM NSS AUC KLDiv 

AViNet(B) 0.7953 0.6006 3.5085 0.8855 0.7582 
AViNet-0 0.7962 0.6005 3.5125 0.8856 0.7576 
AViNet-R 0.7962 0.6007 3.5125 0.8856 0.7573 
AViNet(A) 0.7919 0.5971 3.4919 0.8871 0.7666 

AViNet(RNA) 0.7967 0.5991 3.5135 0.8898 0.7603 
ViNet-D 0.7956 0.6047 3.5104 0.8849 0.7632 

AViNetVGG 0.7927 0.6003 3.4912 0.8834 0.7534 
AViNetAvid 0.7932 0.6034 3.4923 0.8848 0.7573 

Table 7: Comparison of metrics on the DHF1K(val), Hollywood-2 and UCF-Sports test sets. 

DHF1K Hollywood-2 UCF-Sports 
CC sAUC AUC NSS SIM CC sAUC AUC NSS SIM CC sAUC AUC NSS SIM 

ViNet 0.521 0.732 0.919 2.956 0.388 0.693 0.813 0.930 3.730 0.550 0.673 0.810 0.924 3.620 0.522 
AViNet 0.517 0.723 0.912 2.941 0.380 0.700 0.814 0.931 3.661 0.534 0.709 0.809 0.931 3.915 0.531 
ViNet-D 0.521 0.729 0.914 3.000 0.379 0.703 0.815 0.930 3.778 0.551 0.723 0.812 0.936 3.956 0.533 

research landscape, identify the shortcomings, and help build im-
proved AVSP models. 
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