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Abstract

We consider the problem of single-source domain gener-
alization. Existing methods typically rely on extensive aug-
mentations to synthetically cover diverse domains during
training. However, they struggle with semantic shifts (e.g.,
background and viewpoint changes), as they often learn
global features instead of local concepts that tend to be do-
main invariant. To address this gap, we propose an ap-
proach that compels models to leverage such local concepts
during prediction. Given no suitable dataset with per-class
concepts and localization maps exists, we first develop a
novel pipeline to generate annotations by exploiting the rich
features of diffusion and large-language models. Our next
innovation is TIDE, a novel training scheme with a con-
cept saliency alignment loss that ensures model focus on the
right per-concept regions and a local concept contrastive
loss that promotes learning domain-invariant concept rep-
resentations. This not only gives a robust model but also can
be visually interpreted using the predicted concept saliency
maps. Given these maps at test time, our final contribution
is a new correction algorithm that uses the corresponding
local concept representations to iteratively refine the pre-
diction until it aligns with prototypical concept representa-
tions that we store at the end of model training. We evaluate
our approach extensively on four standard DG benchmark
datasets and substantially outperform the current state-of-
the-art (12% improvement on average) while also demon-
strating that our predictions can be visually interpreted.

1. Introduction
Enhancing deep neural networks to generalize to out-of-
distribution samples remains a core challenge in machine
learning and computer vision research, as real-world test
data often diverges significantly from the training distribu-
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Figure 1. Samples from VLCS (left) and PACS dataset (right)
across domain shifts, corresponding to bird and person class. First
row displays GradCAM maps [43] for ABA’s class predictions.
We observe that model attention of ABA [5] falters across domain
shifts. Second and third row display the concept specific Grad-
CAM maps from TIDE. We posit that accurate concept learning
and localization facilitates DG.

tion [31]. The challenges compound when obtaining la-
beled samples from the target domain is expensive or un-
feasible, hindering application of semi-supervised learning
or domain adaptation [25, 32, 49]. The problem of Do-
main Generalization (DG) [30, 44, 54, 61, 63] represents
a promising avenue for developing techniques that capture
domain-invariant patterns and improve performance on out-
of-distribution samples. In this paper, we focus on Single
Source Domain Generalization (SSDG), where a model is
trained on data from a single domain and aims to generalize
well to unseen domains [40, 51]. It represents the most strict
form of DG, as the model must extract domain-invariant
features from a single, often limited perspective, without
exposure to the variation present across multiple domains.

Most previous work on SSDG [5, 7, 8, 19, 20, 22, 59, 63]
relies extensively on data augmentations to support the
learning of domain-generalized features. The premise is
that constructing an extensive repertoire of augmentations
synthesizes instances encompassing a wide spectrum of



human-recognizable domains. However, accounting for all
conceivable real-world augmentations presents an immense
challenge. These models have shown reasonable success in
addressing variations in style and texture [45, 64]; however,
their performance remains modest when faced with more
semantic domain shifts, such as changes in background and
viewpoint e.g., in the VLCS dataset [41, 48].

Consider the results of the state-of-the-art ABA [5]
model on the two examples in Figure 1. In the first ex-
ample (left), domain shifts manifest as variations in back-
ground and viewpoint. In the second example (right), the
training data comprises photos of human faces, whereas the
test data consists of skeletal sketches. In both cases, the do-
main shifts extend beyond style or texture variations, with
ABA failing to correctly classify the samples. Class-level
saliency maps [43] reveal that this misclassification stems
from inadequate focus on critical local concepts under do-
main shifts, such as beak and feathers for birds, or
eyes and lips for persons. Such local concepts are inte-
gral to class definition and remain invariant across domains,
and a robust DG model must adeptly capture these stable
features. We posit that prior efforts learn global features per
class; and if the model fails to learn the correct feature set in
the training domain, its generalization performance is com-
promised as noted from Figure 1 above. The inconsistency
in concept localization further exacerbates the interpretabil-
ity and explainability of these models.

We adopt an alternative approach, wherein, rather than
attempting to encompass all potential augmentations, we
compel the model to leverage essential class-specific con-
cepts for classification. Our key idea is to force the model
to attend to these concepts during training. The primary
hurdle in this path is lack of annotated data specifying rele-
vant class-specific concepts along with their corresponding
localizations. To this end, our first contribution is a novel
pipeline that harnesses large language models (LLMs) and
diffusion models (DMs) to identify key concepts and gen-
erate concept-level saliency maps in a scalable, automated
fashion. We demonstrate that DMs, via cross-attention lay-
ers, can generate concept-level saliency maps for generated
images with notable granularity. Given these maps for a sin-
gle synthesized image within a class, we leverage the rich
feature space of DMs to transfer them to images across di-
verse domains in DG benchmarks [47].

We subsequently introduce TIDE, our second contribu-
tion which employs cross-entropy losses over class and con-
cept labels along with a novel pair of loss functions: a con-
cept saliency alignment loss that ensures the model attends
to the correct regions for each local concept, and a local
concept contrastive loss that promotes learning domain in-
variant features for these regions. As shown in Figure 1,
TIDE consistently attends to local concepts such as beak
and eyes in the training domain as well as across substan-

tial domain shifts. This precise localization significantly
bolsters SSDG performance while enabling the generation
of visual explanations for model decisions.

Marking a major leap in model interpretability and per-
formance gains, our third contribution is to demonstrate
how our model’s concept-level localization can be effec-
tively leveraged for performance verification and test-time
correction. To this end, we introduce the notion of local
concept signatures: prototypical features derived by pool-
ing concept-level features across training samples, guided
by corresponding saliency maps. If the concept features
associated with the predicted class label do not align with
their signatures, it signals the use of incorrect features for
prediction. Consequently, we employ iterative refinement
through concept saliency masking until concept predictions
align with their corresponding signatures. More formally,
our paper makes following contributions:
• We propose a novel synthetic annotation pipeline to au-

tomatically identify key per-class local concepts and their
localization maps, and transfer them to real images found
in DG benchmarks.

• We propose a novel approach, TIDE, to train locally in-
terpretable models with a novel concept saliency align-
ment loss that ensures accurate concept localization and a
novel local concept contrastive loss that ensures domain-
invariant features.

• We show TIDE enables correcting model prediction at
test time using the predicted concept saliency maps as part
of a novel iterative attention refinement strategy.

• We report extensive results on four standard DG bench-
marks, outperforming the current state-of-the-art by a sig-
nificant 12% on average.

2. Related Works
Multi Source domain generalization (MSDG) methods as-
sume access to multiple source domains and domain-
specific knowledge during training and have proposed ways
to learn multi-source domain-invariant features [10, 15, 34,
35, 53], utilize domain labels to capture domain shifts [11,
35, 56], and design target-specific augmentation strate-
gies [14, 16, 23]. However, these assumptions are not prac-
tical for real-world applications [44, 57] and we instead fo-
cus on the more challenging SSDG setting, where only one
source domain and no prior target knowledge is available.

Most SSDG approaches have used augmentations to im-
prove DG [5, 7, 8, 19, 20, 22, 59, 63]. While [59] also uses
diffusion models (DMs) [42] for data augmentation, our ap-
proach differs by leveraging the rich feature space of DMs
primarily for offline saliency map annotation instead of aug-
mentation. More recent work in SSDG [4, 28, 29] has also
turned to approaches based on domain-specific prompting
and causal inference instead of data augmentations. How-
ever, these methods learn global features, limiting invari-
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Figure 2. The TIDE pipeline: Left—Training on a single domain with cross-entropy losses for class (Lc) and concept labels (Lk), alongside
Concept Saliency Alignment (LCSA) and Local Concept Contrastive losses (LLCC). Right—Test-time correction strategy applied in TIDE.

ance across unseen domains. Finally, these methods also do
not provide any signals to interpret model predictions.

On the other hand, while methods like Concept Bottle-
neck Models (CBMs) [24, 33] also learn local concepts,
they are restricted to a predefined set of concepts and more
crucially, cannot ground them to image regions that these
concepts represent. Recent methods [37, 58] have scaled
CBMs to a large number of classes and also proposed to
ways to learn multi-scale representations [52], but they are
also unable to connect these concepts to image pixels. Our
SSDG method addresses these challenges by producing lo-
cal concept saliency maps, enhancing both DG performance
and model prediction interpretability.

3. Methodology
The proposed framework is depicted in Figure 2. Training
comprises three components: class prediction, concept pre-
diction with saliency alignment, and localized contrastive
training. During inference, class and concept predictions
are integrated with a test-time correction mechanism.

In the concept alignment phase, we employ concept-
level saliency maps as ground truth to enforce focus on in-
terpretable features, using a saliency alignment loss. Do-
main invariance is further promoted by localized contrastive
training, where we train the model to cluster similar con-
cepts (e.g., eyes across augmentations) while separating
unrelated concepts (e.g., strings). Finally, a test-time
correction mechanism iteratively refines attention by sup-
pressing irrelevant regions, leveraging concept-signatures to
redirect focus and improve classification accuracy. We pro-
ceed with a concise review of the key notations, followed
by an in-depth exposition of our approach and the pipeline
for generating ground truth concept-level annotations.

We assume the source data is observed from a single
domain, denoted as D = {xi, y

c
i , y

k
i }Ni=1, where xi repre-

sents the i-th image, yci the class label, yki the concept label,
and N the total sample count in the source domain. The
shared CNN backbone is used to obtain the backbone fea-
tures Fx ∈ RW×H×C . The automatically generated ground
truth concept-level saliency maps are denoted by Gk

x. The
GradCAM [43] saliency maps corresponding to class and
concepts labels are denoted by Sc

x and Sk
x respectively.

3.1. Generating Concept-level Annotations

During training, we aim our model to identify and spatially
attend to stable, discriminative regions. However, existing
DG datasets lack fine-grained, concept-level annotations for
such regions. To address this, we propose a novel pipeline
that uses LLMs and DMs to automate scalable concept-level
saliency map generation.

Our primary insight is that DMs can be harnessed to gen-
erate high-quality, concept-level saliency maps for synthe-
sized images. Extracting cross-attention maps [1, 3] from
a DM, given the prompt with concepts and correspond-
ing synthesized image, yields highly granular concept-level
saliency maps. Figure 3 demonstrates how DMs emphasize
specific regions for distinct concepts, capturing fine-grained
attention to features such as a cat’s whiskers or a snow-
man’s hands. With this technique serving as an efficient
tool for yielding concept maps for synthesized images, the
ensuing questions are: (i) how to automate the identification
of pertinent concepts for each class across datasets, and (ii)
how to transfer these concept maps to real-world images to
generate ground-truth annotations.

First, to identify the key concepts associated with each
class, we use GPT-3.5 [2], which we prompt to generate a



Generated Image Extracted Cross Attention Maps

Prompt: A photo of a cat with its whiskers, ears, eyes

Prompt: A photo of a snowman with its nose, eyes, hands

Figure 3. The first column displays the image generated from the
given prompt, while the subsequent three columns show the cross-
attention maps corresponding to each concept in the prompt.

list of distinctive, stable features (prompt in the supplement)
for each class. For instance, GPT-3.5 outputs concepts such
as whiskers, ears, and eyes for a cat. We generate
a prompt leveraging these concepts, which is then used to
synthesize an exemplar image for each class. We further de-
rive the corresponding concept-level attention maps as out-
lined in the preceding paragraph.

Given a single synthesized exemplar image for each class
and the concept-level saliency maps, we turn to the task
of transferring these saliency annotations to real-world im-
ages. DM’s feature space is particularly well-suited for
this, as it captures detailed, semantically-rich representa-
tions that allow us to match synthetic concept regions to real
images across domains. Leveraging this, we use the Diffu-
sion Feature Transfer (DIFT) method [47], which computes
pixel-level correspondences by comparing cosine similar-
ities between DM features. Through this approach, we
establish a region-to-region correspondence between syn-
thetic saliency maps (e.g., mouth of a dog) and similar
regions in real-world images. This enables us to generate
comprehensive, consistent concept-level annotations across
domains as shown in Figure 4.

We obtain these concept-level annotations for widely-
used benchmarks, including VLCS [13], PACS [27], Do-
mainNet [38], and Office-Home [50]. For an image x, the
binarized concept-level maps (Gk

x) are henceforth referred
to as ground-truth saliency maps (GT-maps) in this paper.
Having established a process for generating saliency maps,
the next challenge is identifying the subset of concepts that
the model actually relies on for making predictions.

3.1.1 Concepts that matter

We restrict our method to essential concepts, filtering out
those that do not contribute meaningfully to classification.
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Prompt: A photo of a dog with its ear, mouth

Figure 4. The first row presents the prompt, corresponding synthe-
sized image and attention maps for the concepts ear and mouth.
Below, we demonstrate that using diffusion features correspon-
dences these concept saliency maps from a single exemplar can be
automatically transferred on dog images across domains.

To do this, we train a ResNet-18 [18] classifier on the source
domain [26], compute GradCAM [43] saliency maps for
each class label, and use them to identify regions the model
focuses on when making predictions.

We compute the overlap between the GradCAM maps
and GT-maps for each known concept in the dataset. Given
image x, its saliency map Sc

x for class c and the GT-map Gk
x

for concept k, we define the overlap Ok
c (x) as:

Ok
c (x) =

∑
i,j min(Sc

x(i, j), G
k
x(i, j))∑

i,j G
k
x(i, j)

. (1)

where (i, j) are matrix indices. This measures how much
of the model’s attention for a given class aligns with the
regions corresponding to concept k. We compute this over-
lap for all concepts and images in the training set, and for
each class c, we define the set of important concepts Kc as
those that consistently exhibit high overlap with the saliency
maps:

Kc =

{
k

∣∣∣∣∣ 1

Nc

∑
x∈Dc

Ok
c (x) > τ

}
, (2)

where Nc is the number of training examples in class c,
Dc is the set of images in class c, and τ is a threshold that
determines the importance of the concept. This procedure
functions as a concept discovery module, identifying which



local concepts are critical for predicting each class.

3.2. TIDE

As shown in Figure 2, TIDE utilizes cross-entropy losses
Lc and Lk for class and concept labels, respectively, inte-
grated with novel concept saliency alignment and local con-
cept contrastive losses. We detail these loss terms below.

3.2.1 Concept saliency alignment loss

For each image x, we predict important concepts Kc and
enforce alignment between the saliency maps Sk

x for pre-
dicted concepts and the GT-maps Gk

x. This is encouraged
by our proposed concept saliency alignment (CSA) loss:

LCSA =
1

|Kc|
∑
k∈Kc

∥Sk
x −Gk

x∥22. (3)

Aligning the model’s attention with GT-maps enables
class-specific reasoning, thereby elucidating the rationale
behind predictions by linking them to relevant local fea-
tures.

3.2.2 Local concept contrastive loss

While the CSA loss facilitates explicit localization of con-
cepts, it is equally essential for these concept-level features
to exhibit invariance across domain shifts. To achieve do-
main invariance, we propose a local concept contrastive
(LCC) loss, employing a triplet strategy to cluster similar
concepts (e.g., eyes) across domains while distinguishing
unrelated ones (e.g., feathers and ears).

Let x be an anchor image containing concept k, a posi-
tive image x+ (an augmentation of x that retains concept k),
and a negative image x− (containing a different concept k′).
For each image, we compute a concept-specific feature vec-
tor fk

x ∈ RC , emphasizing the concept’s relevant regions
using the GT-map Gk

x. Each element fk
x (l) is computed as:

fk
x (l) =

∑
i,j

Gk
x · Fx(i, j, l). (4)

where · is an element-wise multiplication operation, Gk
x

is a matrix representing the GT-map, Fx represents convo-
lutional feature maps from the last convolution layer, and
(i, j, l) denotes the lth channel’s (i, j) element. These vec-
tors focus on the concepts of interest (concept k for x and
x+, k′ for x−), in contrast to the global features used in
prior works. The LCC loss is then defined as:

LLCC = max(0, d(fk
x , f

k
x+)− d(fk

x , f
k′

x−) + α), (5)

where d(.) is the euclidean distance and α is the margin.

Algorithm 1 Iterative Test-time Correction
Input: Test image x, initial class prediction c(0), signatures pk for each concept k
Parameter: Threshold δ, max iterations T
Output: Corrected class prediction, cfinal

1: Sc(0),0
x ← GradCAM(x, c(0)) {Initialize saliency map for iteration t = 0}

2: x0
masked ← x

3: for each k ∈ K
c(0)

do
4: fk,0

x ←
∑

i,j Sk
x · Fx(i, j, :)

5: d(fk,0
x , pk)← 1− f

k,0
x ·pk

∥fk,0
x ∥∥pk∥

6: if d(fk,0
x , pk) > δ then

7: Correction Phase:
8: for t← 1 to T do
9: Mc(t−1),t ← Binarize(Sc(t−1),t−1

x )

10: xt
masked ← xt−1

masked ·M
c(t−1),t

11: c(t) ← PredictClass(xt
masked)

12: Sc(t),t
xmasked

← GradCAM(xt
masked, c

(t))

13: for each k ∈ K
c(t)

do
14: fk,t

xmasked
←

∑
i,j Sk,t

xmasked
· Fx(i, j, :)

15: d(fk,t
xmasked

, pk)← 1−
f
k,t
xmasked

·pk

∥fk,t
xmasked

∥∥pk∥

16: if d(fk,t
xmasked

, pk) ≤ δ then

17: Return cfinal ← c(t)

18: end if
19: end for
20: end for
21: end if
22: Return cfinal ← c(0)

23: end for

3.3. Test-time Correction

We establish that our localized, interpretable approach facil-
itates correction of misclassifications through concept-level
feature verification. In this section, we first introduce con-
cept signatures and detail the proposed correction strategy.

3.3.1 Local concept signatures

For each concept k, we define a concept-signature pk ∈
RC , as its representative vector. We derive pk by averaging
the concept-specific feature vectors fk

x across all training
samples x ∈ D containing concept k (denoted as Dk).

pk =
1

|Dk|
∑
x∈Dk

fk
x . (6)

These vectors act as reference points, helping the model
recognize when its attention is aligned with the right con-
cepts during prediction, even when encountering new, un-
seen domains.

3.3.2 Detecting and Correcting misclassifications

Consider the example of test-time correction in Figure 2,
where the model misclassifies a person as a guitar. The pre-
dicted class guitar, involves concepts like strings and



knobs, but these are absent in the image. As a result, the
model erroneously focuses on irrelevant features (e.g., the
person’s legs or the background), as reflected in the Grad-
CAM saliency maps.

To address misclassifications, we employ a two-step ap-
proach: possible mistake detection followed by correction.
The process is outlined in Algorithm 1. First, the model ex-
tracts concept-level saliency maps (Sk

x), for all the concepts
corresponding to the predicted class, which are then used to
compute concept-level features fk

x (step 4). In Step 5 and 6,
we compare the features to the stored concept signatures; a
deviation exceeding δ signals a misclassification.

Once a misalignment is detected, the model enters an it-
erative refinement phase. The features prominent for the
current class level predictions are masked through the cor-
responding saliency map Sc

x (step 9 and 10). The masking
process is cumulative, in effect utilizing all masks from the
first to the tth iteration. The masked features are then used
for subsequent predictions (step 11). This process contin-
ues until the concepts corresponding to the predicted class
aligns with concept-signatures or the maximum iteration
count is reached (steps 8–16 in the algorithm). If alignment
is achieved, the predicted class in that iteration is confirmed
as the final output.

4. Experiments
Datasets: We conduct experiments on four widely used
datasets - PACS [27], VLCS [13], OfficeHome [50], and
DomainNet [38], within the DomainBed [17] evaluation
benchmarks. PACS contains 9,991 images across 7
categories in four domains: ‘sketch’, ‘photo’, ‘clipart’,
and ‘painting’. VLCS consists of 10,729 images over 5
categories and 4 domains. The domains are from VOC2007
(V), LabelMe (L), Caltech101 (C), and SUN09 (S), with
domain shifts primarily driven by background and view-
point variations. OfficeHome, with 15,500 images across
65 categories, emphasizes indoor classes across ‘product’,
‘real’, ‘clipart’, and ‘art’ domains. For DomainNet, we
follow prior work [39, 46] and use a subset of the 40
most common classes across ‘sketch’, ‘real’, ‘clipart’, and
‘painting’.

Experimental Setup: We adhere to the SSDG paradigm,
training on one source domain and testing across three
target domains, i.e., the model is trained independently
four times, with the averaged test accuracies across target
domains reported in each case. Training utilizes solely
source-domain GT-maps, excluding any target-domain
prior knowledge, data or annotations. Minimal augmen-
tations (quantization, blurring, and canny edge), were
used to introduce slight perturbations to create the triplets.
We use SDv2.1 [42] for generating exemplar images and
computing cross-attention maps [1, 3]. To ensure a fair

comparison, we adopt a ResNet-18 backbone throughout
all the experiments. We use the Adam optimizer with an
initial learning rate of 1 × 10−4 and a warm-up schedule
over the first 1000 steps, after which the rate remains
constant. Margin value α is set to 1.0. The batch size is
set to 32. We empirically set δ = 0.1 and cap test-time
correction at T = 10 iterations.

Compared Approaches: We compare our method with
ERM [17] baseline and existing approaches that utilize
augmentation-based techniques (NJPP [59], AugMix [19],
MixStyle [63], CutMix [60], RandAugment [7]), self-
supervised and domain adaptation methods (RSC [22],
pAdaIn [36], L2D [55], RSC+ASR [12]), uncertainty mod-
eling (DSU [29], DSU-MAD [41]), attention and meta-
learning methods (ACVC [8], P-RC [6], Meta-Casual [4]),
and prompt-based learning (PromptD [28]). The number
of methods evaluated differs by dataset. The discrepancy
stems from PACS being the dominant benchmark in prior
SSDG works, resulting in a larger number of methods eval-
uated on it. For VLCS, OfficeHome, and DomainNet, we
rely on reported results from respective papers, or compute
them ourselves (where code was available) to ensure a fair
comparison.

4.1. Main Results

Table 1 provide a comparison of average classification ac-
curacy for our approach against existing methods across the
PACS, VLCS, OfficeHome, and DomainNet datasets. Each
column in these tables represents a source domain used for
training, with the numerical values indicating the average
accuracy on the three target domains. The last column
presents the average of the four columns.

TIDE decisively outperforms existing approaches across
all datasets. It achieves average accuracy gains of 8.33%,
13.37%, 16.16%, and 8.84% over the second-best ap-
proach on PACS, VLCS, OfficeHome, and DomainNet, re-
spectively. Table 1b details the performance on VLCS,
where domain shifts primarily stem from background and
viewpoint variations, with scenes spanning urban to ru-
ral and favoring non-standard viewpoints. Data augmenta-
tion based methods, which focus on style variation, yield
limited gains on VLCS relative to PACS. Nonetheless,
TIDE secures substantial improvements, notably achiev-
ing a 25.34% gain over DSU-MAD when Caltech101 (C)
serves as the source domain. Another noteworthy obser-
vation is that TIDE maintains strong performance across
varying class counts, from VLCS’s 5 to OfficeHome’s 65,
underscoring the scalability of the proposed approach.

4.2. Ablations

Components of TIDE: Ablation experiments on the PACS
dataset are conducted to assess the contribution of each loss



Method Venue Art Cartoon Sketch Photo Average

ERM 65.38 64.20 34.15 33.65 49.35
Augmix [19] ICLR’21 66.54 70.16 52.48 38.30 57.12
RSC [22] ECCV’20 73.40 75.90 56.20 41.60 61.03
Mixstyle [63] ICLR’21 67.60 70.38 34.57 37.44 52.00
pAdaIn [36] CVPR’21 64.96 65.24 32.04 33.66 49.72
RSC+ASR [12] CVPR’21 76.70 79.30 61.60 54.60 68.30
L2D [55] ICCV’21 76.91 77.88 53.66 52.29 65.93
DSU [29] ICLR’22 71.54 74.51 47.75 42.10 58.73
ACVC [8] CVPR’22 73.68 77.39 55.30 48.05 63.10
DSU-MAD [41] CVPR’23 72.41 74.47 49.60 44.15 60.66
P-RC [6] CVPR’23 76.98 78.54 62.89 57.11 68.88
Meta-Casual [4] CVPR’23 77.13 80.14 62.55 59.60 69.86
ABA [5] ICCV’23 75.69 77.36 54.12 59.04 66.30
PromptD [28] CVPR’24 78.77 82.69 62.94 60.09 71.87

TIDE 86.24 86.37 73.11 74.36 80.02

(a) PACS

Method V L C S Average

ERM 76.72 58.86 44.95 57.71 59.06
Augmix [19] ICLR’19 75.25 59.52 45.90 57.43 59.03
pAdaIn [36] CVPR’21 76.03 65.21 43.17 57.94 60.34
Mixstyle [63] ICLR’21 75.73 61.29 44.66 56.57 59.06
ACVC [8] CVPR’22 76.15 61.23 47.43 60.18 61.75
DSU [29] ICLR’22 76.93 69.20 46.54 58.36 62.11
DSU-MAD [41] CVPR’23 76.99 70.85 44.78 62.23 63.71

TIDE 82.62 86.13 70.12 72.44 77.08

(b) VLCS

Method Art Clipart Product Real Average

ERM 57.43 50.83 48.9 58.68 53.96
MixUp [21] ICLR’18 50.41 43.19 41.24 51.89 46.93
CutMix [60] ICCV’19 49.17 46.15 41.2 53.64 47.04
Augmix [19] ICLR’19 56.86 54.12 52.02 60.12 56.03
RandAugment [7] CVPRW’20 58.07 55.32 52.02 60.82 56.56
CutOut [9] arXiv:1708 54.36 50.79 47.68 58.24 52.77
RSC [22] ECCV’20 53.51 48.98 47.16 58.3 52.73
MEADA [62] NIPS’20 57.0 53.2 48.81 59.21 54.80
PixMix [20] CVPR’22 53.77 52.68 48.91 58.68 53.51
L2D [55] ICCV’21 52.79 48.97 47.75 58.31 51.71
ACVC [8] CVPR’22 54.3 51.32 47.69 56.25 52.89
NJPP [59] ICML’24 60.72 54.95 52.47 61.26 57.85

TIDE 72.32 75.13 75.22 73.37 74.01

(c) OfficeHome

Method Clipart Painting Real Sketch Average

ERM 68.73 66.12 68.51 69.44 68.2
MixUp [21] ICLR’18 70.31 64.34 69.21 68.82 68.17
CutMix [60] ICCV’19 71.52 63.84 67.13 69.41 67.98
Augmix [19] ICLR’19 72.37 62.91 69.84 71.22 69.09
RandAugment [7] CVPRW’20 69.71 65.51 68.36 66.93 67.63
CutOut [9] arXiv:1708 70.86 64.48 69.92 71.55 69.20
RSC [22] ECCV’20 68.25 67.91 70.76 66.18 68.28
PixMix [20] CVPR’22 72.12 63.51 71.34 65.46 68.12
NJPP [59] ICML’24 76.14 69.24 76.61 71.21 73.3

TIDE 82.42 80.37 84.15 81.61 82.14

(d) DomainNet

Table 1. SSDG classification accuracies (%) on PACS, VLCS, Of-
ficeHome and DomainNet datasets, with ResNet-18 as backbone.
Each column title indicates the source domain, and the numerical
values represent the average performance in the target domains.

term on the overall performance. In Table 2, we present
classification accuracy by incrementally adding compo-
nents to the training pipeline, demonstrating the contribu-

Method Art Cartoon Sketch Photo Average

Lc 65.38 64.20 34.15 33.65 49.35
Lc + Lk 65.47 64.12 35.44 33.81 49.71
Lc + Lk + LCSA 66.11 64.23 35.14 34.27 49.93
Lc + Lk + LCSA + LLCC 80.28 82.91 66.12 65.37 73.67

+ test-time correction 86.24 86.37 73.11 74.36 80.02

Table 2. Ablation study (%) on PACS.
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Figure 5. t-SNE visualizations to demonstrate impact of LLCC .
Each column represents a test domain (Sketch, Cartoon, Painting),
with the top row showing t-SNE plots without LLCC applied and
the bottom one with it. Please zoom in for optimal viewing.

tion of each element to the model’s performance. We ob-
serve that the introduction of the concept classification loss
Lk and concept saliency alignment loss LCSA does not sig-
nificantly affect the classifier’s accuracy on the test domain.
However, these components are integral to our approach,
enabling test-time correction and, in turn, enhancing both
performance and model interpretability. We observe that
the introduction of the LLCC loss leads to a substantial in-
crease in test domain accuracy, clearly demonstrating its
effectiveness in fostering domain invariance. Finally, we
compare results before and after test-time correction, high-
lighting that even prior to correction, our method achieves
state-of-the-art performance across all source domains on
PACS, underscoring the strength of our approach.

Error analysis of test-time correction: For this analy-
sis, we train TIDE on the photo domain of PACS and test
it on the sketch domain. The model gives an initial accu-
racy of 74.79%, which improves to 82.29% post test-time
correction. In 72.2% of test samples, TIDE does not invoke
test-time correction, with class predictions correct in 93.8%
of these cases, demonstrating substantial reliability. The
supplement provides examples of cases where the model
misclassifications are not picked-up in the signature match-
ing step of test-time correction. In the remaining 27.8% of
cases where correction is initiated, 52.5% successfully con-
verge to the correct classification, significantly contributing
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Figure 6. Illustrative examples of concept level GradCAM maps corresponding to TIDE’s predictions, across the four studied datasets. The
concept names are displayed beneath the maps, with the target domain and predicted class indicated on the left. More results in supplement.

Initial Prediction: dog

Post Correction: person

ears snout

eyes lips

Initial Prediction: elephant

Post Correction: house

tusks trunk

roof windows

Figure 7. The top row shows initial class predictions and Grad-
CAM maps for the concepts, while the bottom row presents the
results after test-time correction.

to the final post-correction accuracy of 82.29%.
t-SNE plots: To demonstrate the impact of LLCC , we

present t-SNE visualizations in Figure 5, showing the dis-
tribution of concept-specific vectors (as computed in Equa-
tion 4). We individually plot the source domain (photo)
along with sketch, cartoon, and painting domains as tar-
gets. Each case includes two plots: one without LLCC (top
row) and one with it (bottom row). We observe that with
LLCC , concept samples (e.g., mouth) align closely across
domains, while distinct separation occurs between different
concepts (e.g., mouth and horns). Without LLCC , cluster
separation and alignment across domains are weaker, high-
lighting its role in improving intra-concept compactness and
inter-concept separability.

4.3. Qualitative Results

Concept Localization: We train the SSDG model on
photo domain for PACS, OfficeHome, and DomainNet and
on Caltech101 for VLCS. The predicted class, concepts
and corresponding saliency maps are shown in Figure 6.
For each target class (e.g., mushroom, kettle, guitar), the
model reliably highlights key concept-specific regions (e.g.,

stem, handle, strings) essential for classification.
The model effectively isolates key features across diverse
contexts, such as the legs and seat of a chair in com-
plex zoomed-out scenes, the beak and feathers of cam-
ouflaged birds, the eyes and whiskers in deformed
sketches of cats, and varying feature sizes, with the wick
occupying a small area and the mushroom cap spanning
a larger one.
Test-time Correction: The Figure 7 visually illustrates the
efficacy of TIDE’s test time correction abilities, by compar-
ing the initial and corrected results. The model initially mis-
classifies the images as dog and elephant, resulting in poorly
aligned concept-level saliency maps for corresponding con-
cepts i.e. ears, snout, tusks and trunk. TIDE detects
and rectifies such errors during inference, leading to accu-
rate classification accompanied by precise concept localiza-
tion. This qualitative evaluation reinforces the robustness of
our approach in refining predictions and generating reliable,
class-specific concept maps.

5. Conclusion
In this work, we considered the problem of single-source
domain generalization and observed that the current state-
of-the-art methods fail in cases of semantic domain shifts
primarily due to the global nature of their learned features.
To alleviate this issue, we proposed TIDE, a new approach
that not only learns local concept representations but also
produces localization maps for these concepts. With these
maps, we showed we could visually interpret model deci-
sions while also enabling correction of these decisions at
test time using our iterative attention refinement strategy.
Extensive experimentation on standard benchmarks demon-
strated substantial and consistent performance gains over
the current state-of-the-art. Future work will rigorously ex-
plore methods to generate confidence scores grounded in
TIDE’s concept verification strategy and would explore the
application of TIDE on other (e.g. fine-grained) classifica-
tion datasets.
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