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Abstract

We motivate weakly supervised learning as an effective
learning paradigm for problems where curating perfectly
annotated datasets is expensive and may require domain
expertise such as fine-grained classification. We focus on
Partial Label Learning (PLL), a weakly-supervised learn-
ing paradigm where each training instance is paired with
a set of candidate labels (partial label), one of which is
the true label. Noisy PLL (NPLL) relaxes this constraint
by allowing some partial labels to not contain the true la-
bel, enhancing the practicality of the problem. Our work
centres on NPLL and presents a framework that initially as-
signs pseudo-labels to images by exploiting the noisy par-
tial labels through a weighted nearest neighbour algorithm.
These pseudo-label and image pairs are then used to train
a deep neural network classifier with label smoothing. The
classifier’s features and predictions are subsequently em-
ployed to refine and enhance the accuracy of pseudo-labels.
We perform thorough experiments on seven datasets and
compare against nine NPLL and PLL methods. We achieve
state-of-the-art results in all studied settings from the prior
literature, obtaining substantial gains in the simulated fine-
grained benchmarks. Further, we show the promising gen-
eralisation capability of our framework in realistic, fine-
grained, crowd-sourced datasets.

1. Introduction
The effectiveness of contemporary deep learning methods
heavily relies on the presence of high-quality annotated
data. Although this might be available for typical im-
age classification, curating labeled datasets for fine-grained
classification problems is costly, arduous and requires ex-
pert knowledge. Weakly supervised learning offers a poten-
tial solution to this challenge by learning from partially la-
belled or noisily labelled examples. It has been widely stud-
ied in different forms, including multi-label learning [36],
semi-supervised learning [23], noisy label learning [12] etc.
Our paper focuses on a weakly supervised setting called
Partial Label Learning (PLL), where each training instance

is paired with a set of candidate labels (partial label), out
of which one is the true label. A fundamental limitation of
PLL is the assumption that the correct label is always in-
cluded in the partial label. To overcome this limitation and
further the practicality, Noisy PLL (NPLL), also referred
to as Unreliable Partial Label Learning (UPLL) [19] was
proposed. NPLL allows some partial labels to not contain
the correct label. In fine-grained classification, annotators
may provide multiple possible labels (e.g., multiple bird
species that look similar), making NPLL techniques useful
for learning from such ambiguous annotations [2].

Prior works [13, 19, 22, 26, 31] on NPLL have predom-
inantly pursued a label disambiguation approach by main-
taining and updating a distribution over label probabilities.
To tackle noisy samples (samples whose correct label is
not in the partial label), current methods apply a detection
cum mitigation technique [13, 22, 26] which are known to
cause error propagation due to the unavoidable detection
errors [31]. Further, most state-of-the-art (SOTA) meth-
ods [13, 26, 31] require a two-stage training. The first stage
involves warm-up training of the classifier, typically using a
PLL algorithm which is followed by their proposed NPLL
strategy. Determining the optimal duration for warm-up
poses a challenge, since a too long or short warm-up period
can negatively impact the performance [31]. Some meth-
ods also need a clean validation set to decide the warm-up
duration [13, 22], which may not always be available.

In this paper, we propose a novel iterative pseudo-
labelling based framework for NPLL called PALS, combin-
ing Psuedo-labelling And Label Smoothing. Unlike prior
works that use the probability distribution over class la-
bels for each image as the supervision for classifier train-
ing, PALS utilizes a pseudo-labelling strategy involving the
weighted nearest neighbour algorithm, that assigns a single
pseudo-label to each image. PALS builds upon the early
efforts of [8], suggesting that methods featuring a strong
inductive bias, such as K-Nearest Neighbors (KNN), can
effectively exploit partial label information for improved
disambiguation. PALS then uses a selected set of reli-
able image-label pairs to train the classifier. Our choice
of using pseudo-labels instead of soft-label distributions



as the supervision, allows us to leverage label smooth-
ing [24]. This imparts robustness towards the potential er-
rors during the pseudo-labelling stage, specifically in the
high noise scenario. Throughout training, we demonstrate
that pseudo-labelling enhances the feature representation
backbone. This, in turn, enhances the accuracy of pseudo-
labelling, creating a positive feedback loop.

In a nutshell, our framework has a single trainable
component (e.g. a ResNet-18 [7] model). It eliminates
multi-branch networks [26] and operates seamlessly with-
out warm-up, resulting in faster training time and lower
memory requirements. We perform comprehensive experi-
ments on seven datasets in widely different settings (varying
noise rates and number of candidate labels). PALS outper-
forms the SOTA methods by a significant margin. In con-
trast to previous methods, PALS maintains its performance
largely even as the noise rate increases. Performance im-
provements, compared to other methods, become more pro-
nounced with increasing numbers of classes and the propor-
tion of noise in partial labels.

In fine-grained classification, we evaluate PALS in
both simulated and real-world crowd-sourced benchmarks.
PALS achieves significant improvements in CUB-200, out-
performing all other methods by over 5-16pp. Moving be-
yond the simulated PLL and NPLL benchmarks as in prior
literature, we also show that PALS obtains consistent results
on realistic, fine-grained, crowd-sourced datasets [21]. In
line with prior works, PALS also benefits from standard reg-
ularization techniques such as Mix-up and Consistency reg-
ularization. However, PALS achieves better performance
regardless of the presence or absence of regularization tech-
niques. In summary, our work makes the following contri-
butions:

• We propose PALS, a novel iterative pseudo-labelling
based framework for NPLL, which involves KNN based
pseudo-labelling and label smoothing. To our knowledge,
we are the first to showcase the effectiveness of label
smoothing for NPLL.

• We show notable gains over nine SOTA PLL and NPLL
methods in the simulated benchmarks from prior litera-
ture. Further, we are the first to demonstrate the effective-
ness of NPLL for fine-grained crowd-sourced datasets,
with PALS consistently performing well across different
datasets and annotator configurations.

• We present thorough ablation studies and quantitative ex-
periments to support our design choices and demonstrate
the efficacy of our approach.

2. Related Work

2.1. Traditional Partial Label Learning
Identification-based strategies (IBS) treat the ground truth
as a latent variable and progressively refine the confidence

of each candidate label during training. [9] use a maximum
likelihood criterion to learn the parameters of a classifier
that maximizes the latent label distribution, estimated from
the classifier predictions in an EM fashion. [33] propose a
maximum margin formulation for PLL, which maximizes
the margin between the ground-truth label and all other la-
bels.

Average-based strategies (ABS) treat all candidate la-
bels equally while distinguishing between the candidate
and non-candidate labels. Early work by [8] extends the
K-Nearest neighbours (KNN) algorithm to tackle PLL by
employing majority voting among the candidate labels of
neighbours. [35] also utilize KNN to classify any unseen
instance based on minimum error reconstruction from its
nearest neighbours. [3] maximize the average output of
candidate labels and minimize the output of non-candidate
labels in parametric models. PALS takes a cue from the
KNN-based ABS approach [8] and uses a variation for the
pseudo-labelling step.

2.2. Deep Partial Label Learning
With the advent of Deep Learning, a variety of
identification-based strategies that employ a neural network
backbone have been proposed. [32] temporally ensemble
the predictions at different epochs to disambiguate the par-
tial label. [16] use self-training to update the model and
progressively identify the true label. [6] formulate the gen-
eration process of partial labels and develop two classifiers:
one, risk-consistent and the other, classifier-consistent. [28]
propose a family of loss functions that generalize the dif-
ferent loss functions proposed by earlier works [3, 9, 16].
[25] present PiCO, a framework that learns discriminative
representations by leveraging contrastive learning and pro-
totypical classification. [29] present a technique that uses
consistency regularization on the candidate set and super-
vised learning on the non-candidate set. [30] upgrade PiCO
and introduce self-training and prototypical alignment to
achieve noteworthy results. However, none of these meth-
ods account for the possibility of noise within partial labels,
which is the primary focus of our work.

2.3. Noisy Partial Label Learning
Earlier works assume that the correct label is always a part
of the partial label, which limits the practicality of the prob-
lem. Hence, some recent works have diverted attention to
NPLL that relaxes this condition, and allows some partial
labels not to contain the correct label. [19] perform disam-
biguation to move incorrect labels from candidate labels to
non-candidate labels and refinement to move correct labels
from non-candidate labels to candidate labels. [22] sepa-
rate the dataset into reliable and unreliable sets and then
perform label disambiguation-based training for the former
and semi-supervised learning for the latter. [13] iteratively



detect and purify the noisy partial labels, thereby reducing
the noise level in the dataset. [26] extend PiCO to tackle
noisy PLL by performing distance-based clean sample se-
lection and learning a robust classifier by semi-supervised
contrastive learning. [31] reduce the negative impact of de-
tection errors by carefully aggregating the partial labels and
model outputs.

Unlike the aforementioned identification-focused ap-
proaches, [17] propose Average Partial Loss (APL), a fam-
ily of loss functions that achieve promising results for both
PLL and NPLL. Moreover, they provide insights into how
ABS can enhance IBS when used for warm-up training.
Our work builds upon this intuition by alternating between
ABS and IBS. Our findings demonstrate that employing
K-nearest neighbours (KNN) for ABS and utilizing cross-
entropy loss with label smoothing for IBS, yields SOTA per-
formance.

3. Methodology

Figure 1 depicts the three modules of PALS that are applied
sequentially in every iteration: Pseudo-labelling, Noise ro-
bust learning and Partial label augmentation. First, we as-
sign pseudo-labels to all images using a weighted KNN.
Then, for each class, we select the m most reliable image-
label pairs which are used to train the classifier. To be re-
silient towards the potential noise in the pseudo-labelling
stage, we leverage label smoothing. Finally, we augment
the partial labels with the confident top-1 predictions of the
classifier. The features from the updated classifier are then
used for the next stage of pseudo-labelling. We hypothesize
that, as training progresses, more number of samples will
be assigned the correct label as the pseudo-label, which will
help learn an improved classifier. Pseudo-code of PALS is
available in Algorithm 1. We now provide a detailed de-
scription of each of the mentioned steps.

3.1. Problem Setup

Let X be the input space, and Y = {1, 2, . . . , C} be
the output label space. We consider a training dataset
D = {(xi, Yi)}ni=1, where each tuple comprises of an im-
age xi ∈ X and a partial label Yi ⊂ Y . Similar to a
supervised learning setup, PLL aims to learn a classifier
that predicts the correct output label. However, the training
dataset in PLL contains high ambiguity in the label space,
which makes the training more difficult when compared to
supervised learning. A basic assumption of PLL is that the
correct label yi is always present in the partial label, i.e.,
∀i yi ∈ Yi. In NPLL, we relax this constraint, and the
correct label potentially lies outside the candidate set, i.e.,
∃i yi /∈ Yi.

reliable labels
Pseudo-Labelling

(weighted KNN)

Classifier

Duck, Albatross, Swan

partial labels

Classification Loss
(label smoothing)

features predictions

Figure 1. Illustration of PALS. Pseudo-labelling involves the usage
of weighted KNN to obtain reliable image-label pairs. These pairs
are used to train a classifier using label smoothing. Finally, the
confident top-1 model predictions are used to augment the partial
label for the upcoming iteration.

3.2. Algorithm
3.2.1. Pseudo-labelling
For each sample (xi, Yi), we pass the image xi through the
encoder f(·) to obtain the feature representation zi. Then,
we select its K nearest neighbours from the entire dataset.
Let Ni denote the set of K nearest neighbours of xi. We
then compute a pseudo-label ŷi using weighted KNN as fol-
lows.

ŷi = argmax
c

∑
xk∈Ni

I[c ∈ Yk] · sik c ∈ [C], (1)

where sik is the cosine similarity between zi and zk. We
assume that these pseudo-labels are less ambiguous than
the partial labels supposing that the samples in the neigh-
bourhood have the same class label. Now, we approximate
the class posterior probabilities q̂c via KNN, inspired by the
Noisy Label Learning literature [18].

q̂c(xi) =
1

Zi

∑
xk∈Ni

I[ŷk = c] · sik c ∈ [C] (2)

where Zi is the normalization factor such
∑

c q̂c(xi) = 1.
Using these posterior probabilities, we select a maximum of
m most reliable image-label pairs for each class where m
is the δ-quantile of [a1, a2, . . . , aC ]. We do this to ensure
a near-uniform distribution of samples across all classes.
a1, a2, . . . , aC are defined as follows.

ac =

n∑
i=1

I
[
c = argmax

c′
q̂c′(xi) & c ∈ Yi

]
, c ∈ [C]

(3)
Thus, ac is the number of samples for which c is the highest
probable class according to the posterior probability and c
is also in the partial label of those samples. For instance,
when δ = 0, m = min([a1, a2, . . . , aC ]).

A key insight is that, as training progresses, the per-class
agreements ac also increase. This leads to an increase in



Algorithm 1 Pseudo-code of PALS

Input: Dataset D, encoder f(·), classifier h(·),
epochs Tmax, mini-batch size B, hyper-parameters
k, δ, ζ, r, λmax, λmin

1: for t = 1, 2, . . . , Tmax do
2: Compute psuedo-labels ŷi for all samples xi in the

dataset using Eq.(1);
3: Compute the posterior probability vectors using

Eq.(2);
4: Compute the maximum samples to be selected per

class m using Eq.(3);
5: Build the Reliable image-label pairs set T using

Eq.(4);
6: Shuffle T into T

B mini-batches;
7: for b = 1, 2, . . . , T

B do
8: Update parameters of f(·) and h(·) by minimiz-

ing loss in Eq.(10);
9: end for

10: Perform Partial label augmentation using Eq.(11);
11: end for
Output: parameters of f(·) and h(·)

m and, consequently, the number of reliable pseudo-labels.
The selection procedure of m most reliable images per class
is described below.

For class c, the images for which the posterior probabil-
ity approximated via KNN q̂c(xi) is greater than the thresh-
old γc are chosen as reliable images. Thus, the set of re-
liable pairs belonging to the c-th class (denoted as Tc) is
defined as follows.

Tc = {(xi, c) | q̂c(xi) > γc, c ∈ Yi, i ∈ [n]} c ∈ [C]
(4)

For the c-th class, the threshold γc is dynamically de-
fined such that a maximum of m samples can be selected
per class. Note that, it is possible for a sample xi to satisfy
the conditions for multiple different Tc. In that case, we
choose the one Tc that has the highest q̂c(xi). Finally, we
form the reliable image-label pair set T as

T =

C⋃
c=1

Tc = {(xi, ỹi)}ñi=1 (5)

where ỹi is the reliable pseudo-label for xi and ñ is the
number of selected reliable samples.

3.2.2. Noise robust learning
We train a noise-robust classifier h(·) by leveraging la-
bel smoothing [24] and optional regularization components.
Label smoothing uses a positively weighted average of the
hard training labels and uniformly distributed soft labels to
generate the smoothed labels. Let eỹi

be C-dimensional

one-hot encoding of label ỹi such that its ỹthi element is
one and rest of the entries are zero. The corresponding
smoothed label eLS,r

ỹi
is:

eLS,r
ỹi

= (1− r) · eỹi
+

r

C
· 1 (6)

Then the per-sample classification loss is formulated as:

Lce(xi, e
LS,r
ỹi

) = −(1− r) log(hỹi(f(xi)))

− r

C

C∑
j=1

log(hj(f(xi)))
(7)

Although label smoothing introduces an additional hyper-
parameter r, fixing it to a high value that is greater than
the true noise rate (r = 0.5 in the experiments) improves
performance [15].

3.2.3. Optional regularization components
In line with the prior works, we also enhance the perfor-
mance of PALS by leveraging Mix-up [34] and Consis-
tency regularization (CR) [1]. Consider a pair of samples
(xi, e

LS,r
ỹi

) and (xj , e
LS,r
ỹj

). We create the Mix-up image
by linearly interpolating with a factor αmix ∼ Beta(ζ, ζ)
where ζ is a parameter in the beta distribution and define
the Mix-up loss below.

xmix
ij = αmixxi + (1− αmix)xj (8)

Lmix(xi,xj) = αmLce(x
mix
ij , eLS,r

ỹi
)

+(1− αm)Lce(x
mix
ij , eLS,r

ỹj
)

(9)

Then, we include CR in the complete training objective.
The idea is that the model should produce similar predic-
tions for perturbed versions of the same image. We imple-
ment a variation by assigning the same pseudo-label to both
weak and strong augmentations of an image.

Lfinal =
∑

i,j,j′∈[ñ]

Lmix(augw(xi), augw(xj))

+Lmix(augs(xi), augs(xj′)) i, j, j′ ∈ [ñ]

(10)

where augw(·) and augs(·) represent weak and strong aug-
mentation function respectively. Since Mix-up and CR
are optional components, we show the effectiveness of our
framework without these components in table 6.

3.2.4. Partial label augmentation
In Pseudo-labelling (Eq.4), for every sample image, we se-
lect its reliable pseudo-label only from the partial label.
This limits the number of correct samples that can be se-
lected in the NPLL case. To overcome this issue, we include
the highest probability class of the current model prediction
in the partial label for the next iteration if it is greater than



a threshold λt. λt is a decaying threshold and can be inter-
preted as balancing between precision and recall. Initially,
the high threshold implies that few accurate predictions are
used to avoid error propagation. The threshold is later de-
creased to allow more samples to be de-noised.

Y t+1
i =


Yi ∪ {argmax

c
hc
t(ft(augw(xi)))},

if max
c

hc
t(ft(augw(xi))) > λt

Yi, otherwise.

(11)

Here, ft and ht are the encoder and classifier at the tth it-
eration. It is important to note that, we include the highest
probability class in the true partial label set Yi to get Y t+1

i .
Unlike previous works [13, 31], we do not directly disam-
biguate the partial label. Instead, we merely include a pos-
sible candidate to allow its selection in the pseudo-labelling
stage.

4. Experiments
4.1. Experimental Setup
Datasets We construct the PLL and NPLL benchmark for
four different datasets: CIFAR-10, CIFAR-100, CIFAR-
100H [11] and CUB-200 [27]. We follow the same dataset
generation process of [26]. The generation process is gov-
erned by two parameters: the partial rate (q) and the noise
rate (η). The partial rate q represents the probability of an
incorrect label to be present in the candidate set and the
noise rate η represents the probability of excluding the cor-
rect label from the candidate set. For CIFAR10, we ex-
periment with q ∈ {0.1, 0.3, 0.5}, and for other datasets
(with a larger number of classes) we select q from the set
{0.01, 0.03, 0.05}. We conduct experiments using different
values of η ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, where values of η
exceeding 0.3 indicate high noise scenarios. Further, we
show the effectiveness of our approach in real-world an-
notation settings by considering three fine-grained crowd-
sourced datasets: Treeversity#6, Benthic, Plankton [21].
Treeversity is a publicly available dataset of plant images,
crowdsourced by the Arnold Arboretum of Harvard Univer-
sity. Benthic is a collection of seafloor images containing
flora and fauna. Plankton consists of underwater plankton
images. Each image in these datasets has multiple annota-
tions provided by domain experts.

Baselines We compare PALS against nine prior SOTA
methods, four PLL and five NPLL. The PLL methods in-
clude 1) RC [6]: a risk-consistent classifier for PLL; 2)
LWS [28]: employs a loss trade-off between candidate la-
bels and non-candidate labels; 3) PiCO [25]: learns dis-
criminative representations using contrastive and prototype
learning 4) CRDPLL [29]: adapts consistency regulariza-
tion for PLL. The NPLL methods include 1) PiCO+ [26]:
extends PiCO for NPLL by including additional losses; 2)

FREDIS [19]: performs partial label disambiguation and
refinement 3) IRNet [13]: detects and corrects the partial
labels iteratively; 4) UPLLRS [22]: proposes a two-stage
framework for dataset separation and disambiguation; 3)
ALIM [31]: aggregates the partial labels and model outputs
using two variants of normalization (Scale and OneHot). If
available, we directly reference the numbers from the ex-
isting literature, and whenever possible, we present results
obtained by customizing the publicly available official code
repository to suit the specific configuration.

Implementation Details. To ensure a fair comparison,
we use ResNet-18 [7] as the encoder f(·) and h(·) as the
linear classifier. Other methods either use ResNet-18 [7] or
a stronger backbone e.g. FREDIS uses ResNet32. Strong
augmentation function utilizes autoaugment [4] and cutout
[5]. Faiss [10] is used to speed up the nearest neighbour
computation. Irrespective of the partial and noise rate, we
set K = 15, δ = 0.25, ζ = 1.0, r = 0.5, and decrease
λt linearly in [0.45, 0.35]. For CIFAR datasets, we choose
the SGD optimizer with a momentum of 0.9 and set the
weight decay to 0.001. The initial learning rate is set to
0.1 and decayed using a cosine scheduler, and the model
is trained for 500 epochs. For CUB-200, as per the ex-
isting works, we initialize the encoder with ImageNet-1K
[20] pre-trained weights. We choose the SGD optimizer
with a momentum of 0.9 and set the weight decay to 5e−4.
We set the initial learning rate to 0.05 and decay it by 0.2
using the step scheduler at epochs [60, 120, 160, 200] and
train for 250 epochs. On crowdsourced datasets, we utilize
a ResNet50 backbone pre-trained on ImageNet-1K, to align
with prior efforts. We report the mean and standard devia-
tion of the accuracy on test sets based on three runs for each
experiment. All experiments are implemented with PyTorch
and carried out on the NVIDIA GeForce RTX 2080 Ti GPU.

4.2. Results and Discussion

SOTA comparisons: Table 1 compares PALS with the
SOTA methods on CIFAR-10 and CIFAR-100 datasets. The
results are presented with three different partial rates and
three different noise rates, comprising a total of nine com-
binations. PALS surpasses all other methods in all settings,
providing clear evidence of its effectiveness. It is also ap-
parent that the PLL approaches struggle to generalize effec-
tively in noisy settings, highlighting the necessity for noise-
resistant adaptations.

The performance of all methods drops with an increase
in the size of the candidate label set (higher q) and with an
increase in noise rate. A key aspect is to observe the perfor-
mance across the first and last column of Table 1 (the easiest
vs. the most complex setting). In several methods, the per-
formance significantly drops; for instance, on CIFAR-10,
the performance of LWS drops from 82.97 to 39.42. PALS
and ALIM fare better in this regard and are able to retain



CIFAR-10 q = 0.1 q = 0.3 q = 0.5
η = 0.1 η = 0.2 η = 0.3 η = 0.1 η = 0.2 η = 0.3 η = 0.1 η = 0.2 η = 0.3

RC 80.87±0.30 78.22±0.23 75.24±0.17 79.69±0.37 75.69±0.63 71.01±0.54 72.46±1.51 59.72±0.42 49.74±0.70
LWS 82.97±0.24 79.46±0.09 74.28±0.79 80.93±0.28 76.07±0.38 69.70±0.72 70.41±2.68 58.26±0.28 39.42±3.09
FREDIS 90.57±0.23 88.01± 0.19 84.35±0.20 89.02±0.15 86.14±0.17 81.02±0.60 87.42±0.21 80.81±0.99 65.15±0.13
PiCO 90.78±0.24 87.27±0.11 84.96±0.12 89.71±0.18 85.78±0.23 82.25±0.32 88.11±0.29 82.41±0.30 68.75±2.62
CRDPLL 93.48±0.17 89.13±0.39 86.19±0.48 92.73±0.19 86.96±0.21 83.40±0.14 91.10±0.07 82.30±0.46 73.78±0.55
IRNet 93.44±0.21 92.57±0.25 92.38±0.21 92.81±0.19 92.18±0.18 91.35±0.08 91.51±0.05 90.76±0.10 86.19±0.41
PiCO+ 94.48±0.02 94.74±0.13 94.43±0.19 94.02±0.03 94.03±0.01 92.94±0.24 93.56±0.08 92.65±0.26 88.21±0.37
UPLLRS 95.16±0.10 - 94.65±0.23 94.32±0.21 - 93.85±0.31 92.47±0.19 - 91.55±0.38
ALIM-Scale 95.71±0.01 95.50±0.08 95.35±0.13 95.31±0.16 94.77±0.07 94.36±0.03 94.71±0.04 93.82±0.13 90.63±0.10
ALIM-Onehot 95.83±0.13 95.86±0.15 95.75±0.19 95.52±0.15 95.41±0.13 94.67±0.21 95.19±0.24 93.89±0.21 92.26±0.29
PALS 96.28±0.05 96.17±0.18 95.90±0.20 95.96±0.08 95.76±0.12 95.43±0.17 95.52±0.13 95.89±0.14 94.18±0.10

CIFAR-100 q = 0.01 q = 0.03 q = 0.05
η = 0.1 η = 0.2 η = 0.3 η = 0.1 η = 0.2 η = 0.3 η = 0.1 η = 0.2 η = 0.3

RC 52.73±1.05 48.59±1.04 45.77±0.31 52.15±0.19 48.25±0.38 43.92±0.37 46.62±0.34 45.46±0.21 40.31±0.55
LWS 56.05±0.20 50.66±0.59 45.71±0.45 53.59±0.45 48.28±0.44 42.20±0.49 45.46±0.44 39.63±0.80 33.60±0.64
FREDIS 64.73±0.28 64.53 ± 0.39 59.42±0.18 67.38±0.40 63.86±0.50 60.86±0.72 66.43±0.22 63.09 ± 0.22 56.15±0.18
PiCO 68.27±0.08 62.24±0.31 58.97±0.09 67.38±0.09 62.01±0.33 58.64±0.28 67.52±0.43 61.52±0.28 58.18±0.65
CRDPLL 68.12±0.13 65.32±0.34 62.94±0.28 67.53±0.07 64.29±0.27 61.79±0.11 67.17±0.04 64.11±0.42 61.03±0.43
IRNet 71.17±0.14 70.10±0.28 68.77±0.28 71.01±0.43 70.15±0.17 68.18±0.30 70.73±0.09 69.33±0.51 68.09±0.12
PiCO+ 75.04±0.18 74.31±0.02 71.79±0.17 74.68±0.19 73.65±0.23 69.97±0.01 73.06±0.16 71.37±0.16 67.56±0.17
UPLLRS 75.73±0.41 - 71.72±0.39 - - - 74.73±0.24 - 70.31±0.22
ALIM-Scale 77.37±0.32 76.81±0.05 76.45±0.30 77.60±0.18 76.63±0.19 75.92±0.14 76.86±0.23 76.44±0.12 75.67±0.17
ALIM-Onehot 76.52±0.19 76.55±0.24 76.09±0.23 77.27±0.23 76.29±0.41 75.29±0.57 76.87±0.20 75.23±0.42 74.49±0.61
PALS 80.90±0.50 80.45±0.49 79.78±0.13 80.33±0.04 79.40±0.50 78.52±0.24 80.00±0.25 79.08±0.22 77.87±0.29

Table 1. Comparison of PALS with the previous state-of-the-art methods across various partial and noise rates. ‘-’ indicates missing values
due to the code being unavailable.

CIFAR-100 q = 0.01 q = 0.05 q = 0.1
RC 75.36±0.06 74.44±0.31 73.79±0.29
LWS 64.55±1.98 50.19±0.34 44.93±1.09
PiCO 73.78±0.15 72.78±0.38 71.55±0.31
CRDPLL 79.74±0.07 78.97±0.13 78.51±0.24
PiCO+ 76.29±0.42 76.17±0.18 75.55±0.21
PALS 81.46±0.13 81.00±0.26 80.77±0.12

Table 2. PLL Experiments. η is set to 0.

CIFAR-100 q = 0.05 q = 0.05
η = 0.4 η = 0.5

FREDIS 53.44±0.39 48.05±0.20
PiCO 44.17±0.08 35.51±1.14
CRDPLL 57.10±0.24 52.10±0.36
UPLLRS - 64.78±0.53
PiCO+ 66.41±0.58 60.50±0.99
ALIM-Scale 74.98±0.16 72.26±0.25
ALIM-Onehot 71.76±0.56 69.59±0.62
PALS 76.72±0.41 74.79±0.40

Table 3. Extreme noise experiments. η values are above 0.3

their performance with increased ambiguity. Another note-
worthy observation is that the performance improvement of
PALS becomes more pronounced in CIFAR-100 compared
to the CIFAR-10 dataset.

PLL results: While our primary focus is on NPLL, as-
sessing performance in the noise-free setting (PLL) is cru-
cial to ensure that the adaptations for noise do not negatively
affect the zero noise performance. As most NPLL methods
do not provide results in noise-free settings, we limit our
comparisons primarily to the PLL methods. In Table 2, we
evaluate PALS on the CIFAR-100 PLL benchmark. The re-
sults indicate that PALS also achieves superior performance
in the absence of noise.

Extreme noise results: In Table 3, we present the results
in extremely noisy scenarios (e.g., η = 0.5, the correct label
is absent from half of the partial labels). For most methods,
the performance drastically drops. For example, for PiCO+
the performance drops from 76.17 (η = 0) to 60.50 (η =
0.5). For CRDPLL, the drop is from 78.97 (η = 0) to 52.10
(η = 0.5). ALIM and PALS fare well here, with PALS
obtaining the best results.

Simulated fine-grained datasets: We first evaluate
PALS on the CIFAR-100H dataset, which considers label
hierarchy and divides the CIFAR-100 dataset into 20 coarse
labels (5 fine-grained labels per coarse label). When curat-
ing the NPLL benchmark, the candidate sets are restricted
to lie within the same coarse label. PALS obtains the best
results in this modified setting (Table 4).

We also evaluate on the CUB-200 bird classification
dataset. Since all the images exclusively showcase birds,
the candidate labels are intricately linked, presenting a
heightened challenge for disambiguation. Table 4 presents
the results with different q and η values. PALS outperforms
other approaches by a significant margin, bringing over 7pp
improvement over ALIM-Scale at q = 0.05 and η = 0.2.

Fine-grained crowd-sourced datasets: Prior efforts
of classification on crowd-sourced datasets [21] take a
data-centric approach, involving label enhancement through
semi-supervised and noisy label learning, with subsequent
evaluation by training a model on the enhanced dataset.
Instead, we tackle this as a PLL/NPLL problem and em-
ploy PALS. As the only key change in the framework, we
utilize the normalized annotation label frequency per im-
age in the weighted KNN step. We construct the partial



Dataset CIFAR-100H CUB-200 CUB-200 CUB-200 CUB-200
q 0.5 0.05 0.01 0.05 0.1
η 0.2 0.2 0.0 0.0 0.0
PiCO 59.8±0.25 53.05±2.03 74.14±0.24 72.17±0.72 62.02±1.16
PiCO+ 68.31±0.47 60.65±0.79 69.83±0.07 72.05±0.80 58.68±0.30
ALIM-Scale 73.42±0.18 68.38±0.47 74.44±0.68 74.26±0.32 62.88±0.90
ALIM-Onehot 72.36±0.20 63.91±0.35 - - -
PALS 75.16±0.59 75.76±0.27 80.71±0.21 79.46±0.25 78.73±0.36

Table 4. Simulated fine-grained datasets.

Treeversity Benthic Plankton
Divide-Mix 77.84±0.52 71.72±1.21 91.79±0.51
ELR+ 79.05±1.22 67.53±1.76 91.76±0.91
PiCO 84.74±0.42 51.01±0.74 24.95±0.13
PALS 81.56±0.28 77.50±0.35 90.04±0.50

(a) Ten human annotators

Treeversity Benthic Plankton
Divide-Mix 76.38±1.78 71.50±0.42 91.96±0.52
ELR+ 77.07±0.43 69.35±0.97 91.36±0.40
ALIM-Onehot 82.58±0.92 49.17±3.06 23.75±2.53
PALS 80.47±1.22 76.52±0.03 90.20±0.97

(b) Three human annotators

Table 5. Fine-grained crowdsourced Datasets

CIFAR-10 q = 0.1 q = 0.5
η = 0.1 η = 0.3 η = 0.1 η = 0.3

PiCO 90.78±0.24 84.96±0.12 88.11±0.29 68.75±2.62
PiCO+ 93.64±0.19 92.18±0.38 91.07±0.02 84.08±0.42
ALIM-Scale 94.15±0.14 93.28±0.08 92.52±0.12 86.51±0.21
ALIM-Onehot 94.15±0.15 93.77±0.27 92.67±0.12 89.80±0.38
PALS 94.77±0.12 94.53±0.08 93.71±0.06 92.08±0.55

CIFAR-100 q = 0.03 q = 0.05
η = 0.1 η = 0.3 η = 0.3 η = 0.5

PiCO 67.38±0.09 58.64±0.28 58.18±0.60 35.51±1.14
PiCO+ 70.89±0.13 64.22±0.23 62.24±0.38 45.29±0.14
ALIM-Scale 74.33±0.11 71.69±0.39 71.68±0.14 64.74±0.16
ALIM-Onehot 71.43±0.21 70.14±0.25 70.05±0.43 63.39±0.82
PALS 76.68±0.08 75.00±0.16 73.56±0.26 70.85±0.49

Table 6. Comparison of PALS with the previous state-of-the-art
methods when excluding Mix-up and Consistency regularization
from all the methods.

label by taking into account the annotations provided by
human annotators. Table 5a presents results under the as-
sumption of ten available human annotators, simulating the
PLL scenario with a negligible noise rate, while Table 5b
displays results assuming three human annotators, simulat-
ing the NPLL scenario characterized by a substantial noise
rate. We compare against two noisy label learning methods:
Divide-Mix [12] and ELR+ [14], a PLL method (PiCO) and
an NPLL method (ALIM). In all cases, we use a pre-trained
ResNet50 backbone to allow a fair one-to-one comparison.
PALS achieves competitive performance on Treeversity. On
Benthic and Plankton, which contain underwater images,
there is a sharp decline in the performance of PiCO and
ALIM. PALS displays promising generalization capability
by outperforming them by a significant margin.

Mix-up CR q = 0.05 q = 0.05
η = 0.3 η = 0.5

✗ ✗ 73.30 71.41
✗ ✓ 74.33 72.51
✓ ✗ 75.91 73.12
✓ ✓ 77.61 75.15

(a) Influence of regularization

K q = 0.05 q = 0.05
η = 0.3 η = 0.5

10 77.87 74.51
15 77.61 75.15
25 78.29 74.98
50 77.01 75.60

(b) Impact of K

r 0.6 0.5 0.4 0.0
q=0.05 76.87 77.61 78.19 75.64
η=0.3
q=0.05 74.17 75.15 74.41 65.63
η=0.5

(c) Impact of label smoothing rate r

δ 0.0 0.25 0.50 0.75
q=0.05 75.92 77.61 78.22 77.62
η=0.3
q=0.05 73.50 75.15 74.72 72.24
η=0.5

(d) Impact of δ

Backbone q = 0.05 q = 0.05
η = 0.3 η = 0.5

Wide-ResNet-34x10 81.3 78.18
ResNext-50 79.55 76.37
SE-ResNet-50 79.46 75.56
DenseNet-121 78.75 74.36
ResNet-18 77.61 75.15

(e) Influence of backbones

Pseudo q = 0.05 q = 0.05
label η = 0.3 η = 0.5
✗ 76.71 72.86
✓ 77.61 75.15

(f) Impact of Eq. (1)

Table 7. Ablation studies

4.3. Ablation studies

In Table 7, we perform ablations using two different noise
rates: (η = 0.3 and η = 0.5), while setting q = 0.05. All
ablations are performed using the CIFAR-100 dataset.

Influence of regularization components: In table 7a,
we study the impact of using Mix-up and CR. Removing
Mix-up causes a decrease of around 2− 3pp, and the exclu-
sion of CR causes a decrease of about 1pp, which validates
their role in our framework. We observe that their combined
usage generates a more substantial effect. It must be noted
that prior methods also utilize Mix-up, CR or both. For
a fair comparison, we remove both Mix-up and CR from
all the approaches and present the results in table 6. PALS
achieves SOTA results in this setup as well and in the high
noise setting of CIFAR-100 (η = 0.5), outperforms the sec-
ond best method (ALIM-Scale) by a significant margin of
over 6pp.

Impact of K in KNN: We vary the value of K from the
set {10, 15, 25, 50}. We find that performance remains sim-
ilar across different K values, with statistically insignificant
differences. We use K = 15 for all our experiments.

Impact of δ parameter: δ controls the number of sam-
ples chosen per class to construct the reliable set. In ta-
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Figure 2. Number of selected reliable pairs (ñ) while training on
CIFAR-100 with q = 0.05 and η = 0.3

ble 7d, δ = 0.5 yields the best results for η = 0.3, while
δ = 0.25 produces the best results for η = 0.5. Lower δ
implies that a smaller but more confident reliable set is con-
structed, which leads to better performance in a high noise
setting.

Impact of label smoothing: In Table 7c, r = 0.4 yields
the best results for η = 0.3, while r = 0.5 produces the
best results for η = 0.5. Considering that elevated noise
levels lead to increased noise in pseudo-labelling, a higher
label smoothing rate appears to confer advantages. More-
over, when r = 0, there is a significant drop in the accuracy
under the extreme noise setting. The result strongly estab-
lishes the noise-robustness imparted by label smoothing in
the NPLL context.

Influence of backbones: Table 7e establishes that PALS
is robust to the choice of backbone. Prior effort [29] has
shown that this is not necessarily the case with other meth-
ods like PiCO.

Impact of pseudo-label computation in Eq. (1): The
first row of Tab. 7f shows the results when Eq. (1) is
skipped, and class posterior probabilities are computed di-
rectly based on the partial label Yk. There is a small drop in
performance, showing that initial pseudo-label computation
is important for robustness against noise.

Insights into pseudo-labelling: Figure 2 shows the
number of selected reliable samples ñ (blue curve), while
training on CIFAR-100 with q = 0.05 and η = 0.3. For
visualization purposes, we also plot the number of the se-
lected examples that are correct (red curve) by comparing
them with the ground truth. In the first epoch, we observe
that out of the 50000 samples, 7211 samples are selected
for training (of which 4036 are correct). This highlights the
effectiveness of the pseudo-labelling approach, given that
the backbone is randomly initialized and there is a presence
of significant noise in the partial labels. Since a good por-
tion of selected samples are correct, this aids in learning
improved features. Over time, both the number of selected

examples and the proportion of correct labels increase, en-
hancing the quality of the feature representations. At con-
vergence, (ñ) is 45285, of which 40330 pseudo-labels are
correct.

Training time: PALS is about 1.5 times faster to train
compared to PiCO+ and ALIM. On an NVIDIA GeForce
RTX 2080 Ti GPU, one epoch of PALS takes 40 seconds,
while one epoch of ALIM takes 60 seconds. The numbers
reported in our paper are by training for 500 epochs, while
ALIM reports numbers after training for 800-1000 epochs
(based on their official code). So effectively, PALS is about
three times faster to train. On larger models, the gap widens.
For example, for a WideResNet, PALS takes 221 seconds,
and ALIM takes 550 seconds per epoch, making PALS 2
times faster.

5. Conclusion
We propose PALS, a framework for NPLL that iteratively
performs pseudo-labelling and classifier training. Pseudo-
labelling involves the weighted KNN algorithm, and a clas-
sifier is trained using the labelled samples while leveraging
label smoothing and optional regularization components.
PALS achieves SOTA results in a comprehensive set of ex-
periments, varying partial rates and noise rates. The gains
are more pronounced with an increase in noise and the num-
ber of classes. Notably, PALS excels in the simulated fine-
grained classification tasks. Unlike many previous meth-
ods, PALS preserves its performance as the ambiguity in
the dataset increases. PALS also generalizes well to the real
world, fine-grained, crowd-sourced datasets.

We provide thorough ablation studies to examine the
functioning of the PALS framework. Our analysis under-
scores the consistent contributions of both consistency reg-
ularization and Mix-up to overall performance improve-
ments. Additionally, we highlight the enormous bene-
fits of label smoothing, particularly in high-noise scenar-
ios. We believe that the PALS framework and the in-
sights presented in this study would be helpful for the re-
search community across a wide range of practical applica-
tions.
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