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Abstract— Humans have a natural ability to effortlessly
comprehend linguistic commands such as “park next to the
yellow sedan” and instinctively know which region of the
road the vehicle should navigate. Extending this ability to
autonomous vehicles is the next step towards creating fully
autonomous agents that respond and act according to human
commands. To this end, we propose the novel task of Referring
Navigable Regions (RNR), i.e., grounding regions of interest
for navigation based on the linguistic command. RNR is
different from Referring Image Segmentation (RIS), which
focuses on grounding an object referred to by the natural
language expression instead of grounding a navigable region.
For example, for a command “park next to the yellow sedan,”
RIS will aim to segment the referred sedan, and RNR aims
to segment the suggested parking region on the road. We
introduce a new dataset, Talk2Car-RegSeg, which extends the
existing Talk2car [1] dataset with segmentation masks for the
regions described by the linguistic commands. A separate test
split with concise manoeuvre-oriented commands is provided
to assess the practicality of our dataset. We benchmark the
proposed dataset using a novel transformer-based architecture.
We present extensive ablations and show superior performance
over baselines on multiple evaluation metrics. A downstream
path planner generating trajectories based on RNR outputs
confirms the efficacy of the proposed framework.

I. INTRODUCTION

Autonomous Driving (AD) is concerned with providing
machines with driving capabilities without human interven-
tion. Much of the existing work on autonomous driving has
focused on modular pipelines, with each module specializing
in a separate task like detection, localization, segmentation
and tracking. Collectively, these tasks form the vehicle’s
active perception module, enabling it to perform driver-less
navigation with some additional help from prior generated
detailed high definition maps of the route. However, the
current setup does not allow the capability to intervene and
augment the vehicle’s decision-making process. For example,
post reaching the destination, the rider may want to give
specific guidance on the place to park the car suiting his/her
convenience, e.g. “park between the yellow and the red car
on the left”.

Similarly, sometimes the rider may wish to intervene to
resolve ambiguities or to perform the desired action, e.g. “the
road appears to be blocked, please move to the left lane” or “I
see my friend walking on the left, please slow down and pick
him up”. In a chauffeur-driven car, the above scenarios are
commonplace, as a human can easily understand the natural
language commands and manoeuvre the car accordingly. In
this work, we aim to extend similar abilities to a self-driving
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Command: “Turn in the direction where the man is pointing.”

Fig. 1. Given a natural language command, REC (top image) predicts
a bounding box (cyan box) around the referred object and RIS (the
middle image) predicts a segmentation map around the referred object. In
the context of an AD application, such predictions are not immediately
amenable to downstream tasks like planning. E.g. predicting the man in the
above example does not indicate where the car should go. In contrast, our
work aims to directly predict regions on the road given a natural language
command (green colour annotation, bottom image).

vehicle, i.e. the vehicle takes the natural language command
and the current scene as input and predicts the region of
interest where the car must navigate to execute the command.
A downstream planner can take this region as input and
predict the trajectory or set of manoeuvres to perform the
desired navigation.

One of the fundamental tasks necessary to attain the above
capabilities is comprehending the natural language command
and localising it in the visual domain. The problem is
formally known as visual grounding, and it has seen a surge
of interest in the recent past. The interest is primarily driven
by the success of deep learning models in computer vision
and natural language processing. Most of the current litera-
ture in visual grounding focuses on localising an object of
interest. The object of interest can be grounded either using
bounding boxes (Referring Expression Comprehension) or
using segmentation masks (Referring Image Segmentation).
We focus on the latter type of grounding, but instead of
grounding objects, we ground regions of interest on the



road. Grounding regions of interest are more natural from
a navigation point of view for self-driving vehicles than the
grounding of objects. Even if the referred object is correctly
grounded, it leaves ambiguity on where to take the vehicle. In
contrast, the task of Referring Navigable Regions proposed
in our work provides feasible areas as a goal point. A
motivating example is illustrated in Figure 1.

To this end, we introduce a novel multi-modal task of
Referring Navigable Regions (RNR), intending to ground
navigable regions on the road based on natural language
command in the vehicle’s front camera view. Compared to
RIS task, RNR task involves two-level understanding of
the scene. In the first level, the referring object has to be
identified and in second level the appropriate region for
navigation has to be identified based on the referred object.
For instance, consider the command “park beside the white
car near the tree”, in addition to locating the “white car” near
the “tree”, the RNR task also has to predict an appropriate re-
gion where the command can be executed. Consequently, we
propose a new dataset, Talk2Car-RegSeg, for the proposed
task. This dataset is built on top of the existing Talk2car [1]
dataset. In addition to the existing image-command pairs,
we provide segmentation masks for the regions on the road
where the vehicle could navigate to execute the command.
We benchmark the proposed dataset with a transformer-based
grounding model that can capture correlations between visual
and linguistic features through the self-attention mechanism.
We compare the proposed model against a set of baselines
and present thorough ablation studies. We highlight the
proposed task’s practicability through a downstream planning
module that computes a navigation trajectory to the grounded
region. To summarize, the main contributions of this paper
are the following:

• We introduce the novel task of RNR for applications in
autonomous navigation.

• We present a new Dataset, Talk2Car-RegSeg, for this
task, where we augment the existing Talk2car dataset
with segmentation masks for navigable regions corre-
sponding to the command.

• We benchmark the dataset using a novel transformer
based model and a set of baseline approaches. We
present thorough ablations and analysis studies on the
proposed dataset (e.g. action type of commands, the
length of commands) to assess its applicability in re-
alistic scenarios.

II. RELATED WORK

A. Referring Expression Comprehension

Referring Expression Comprehension (REC) predicts a
rectangular bounding box in an image corresponding to the
input phrase or the sentence. While object detection [2], [3]
predicts bounding boxes for a pre-defined set of categories,
REC does not limit on a category list. Nonetheless, the
task of REC does take inspiration from the object detection
pipeline. In the most commonly used framework, a set of
bounding box region proposals are first generated and then

evaluated against the input sentence [4], [5]. In the robotics
community, significant progress has been made on using
REC in Human-Computer Interactions [6], [7]. REC has also
been explored on autonomous driving applications, following
the introduction of the Talk2Car dataset [1]. Rufus et al. [8]
use softmax on cosine similarity between region-phrase pairs
and employ a cross-entropy loss. Ou et al. [9] employ
multimodal attention using individual keywords and regions.
Despite significant progress in REC, bounding box based
localization is not accurate enough to capture the shape of
the referred object and struggle with objects at a small scale.
Furthermore, just predicting the bounding box is insufficient
for the task of navigation (as illustrated in Figure 1).

B. Referring Image Segmentation

Referring Image Segmentation (RIS) task was introduced
in [10] to alleviate the problems associated with REC by
predicting a pixel-level segmentation mask for the refer-
ring object based on the referring expression. [11] propose
convolutional multimodal LSTM to encode the sequential
interactions between individual words and pixel-level visual
information. [12] utilize query attention and key-word-aware
visual context to model relationships among different image
regions, according to the corresponding query. More recent
works, [13] model multimodal context by cross-modal in-
teraction and guided through a dependency tree structure,
[14] progressively exploits various types of words in the
expression to segment the referent in a graph-based structure.
In contrast to existing works on RIS that directly refer to
objects in an image, we ground the region adjacent to the
object to provide navigational guidance to a self-driving
vehicle. To the best of our knowledge, our work is the
first paper to explore the referring image segmentation in
the context of autonomous driving and propose the task of
Referring Navigable Region.

C. Language Based Navigation

Most of the literature on language-based navigation has
focused on indoor navigation [15]–[17]. Typically the input
to these approaches is a longer text (a paragraph), and
the goal is to reach the required destination in an indoor
3D environment (long trajectory prediction). Shah et al.
[15] utilized attention over linguistic instructions conditioned
on the multi-modal sensory observations to focus on the
relevant parts of the command during navigation task. [16]
approach the language-based navigation task as a sequence
prediction problem. They translate navigation instructions
into a sequence of behaviours that a robot can execute to
reach the desired destination. Wang et al. [17] enforces cross-
modal grounding both locally and globally via reinforcement
learning.

Sriram et al. [18] attempt language-based navigation in an
autonomous driving scenario. They generate trajectory based
on natural language command by predicting local waypoints.
However, their work limits to eight specific behaviours like
take left, take right, not left, etc. The only object considered
in their work is a traffic signal. Our work considers much



Fig. 2. Network architecture for the Transformer Based Model (TBM).

richer language instructions encompassing many objects.
Furthermore, RNR predicts a segmentation map instead of
a single local waypoint or a trajectory corresponding to a
set of sentences. Segmentation masks unlike single waypoint
encourage multiple trajectory possibilities and options to
navigate into that region for a downstream planning or
navigation task.

III. DATASET

The proposed Talk2Car-RegSeg dataset is built on top of
the Talk2Car dataset, an object referral dataset containing
commands written in natural language for self-driving cars.
The original dataset had textual command with a specific
action, referring to an object in the image, and the object
of interest was referred to using a bounding box. However,
for AD applications, as referring directly to objects is not
amenable for downstream tasks like planning, we augmented
the original dataset with segmentation masks correspond-
ing to navigable regions. The newly created Talk2Car-
RegSeg dataset has 8349 training and 1163 validation image-
command pairs, similar to those used in the original dataset.
We observed that the commands in Talk2Car’s validation set
are very complex as they are verbose, and in a significant
number of cases, there were more than one actions in a
single command ex: ”we need to turn right instead of left,
as soon as this truck pulls forward, move over to the right
lane behind it.” We first present results on the full validation
set; however, to evaluate the performance in a controlled
setting, we also curated a novel test split (Test-RegSeg).
Test-RegSeg contains 500 randomly selected images from the
validation set with newly created commands. The commands
in the Test-RegSeg split are simplified and straightforward.
We present results, baseline comparisons, and ablations on
both the complex instruction validation set and the curated
simpler instruction set (Test-RegSeg). In the rest of the paper,
we consider Test-RegSeg as our test set. The dataset and the
code-base will be released at (rnr-t2c.github.io). In the next
section, we describe the dataset creation process.

A. Dataset Curation

The authors of the paper manually annotated the navigable
regions in each image based on the linguistic command.
A simple Graphical User Interface (GUI) was created to

make the annotation process straightforward. In the GUI,
each annotator sees the image, the linguistic command, and
the bounding box for the referred object in the scene. We
used ground truth bounding boxes from the original Talk2Car
dataset as a reference to identify the referred object in the
scene to resolve ambiguities and only focus on annotating
regions of interest.

To verify the quality of annotations, we hired a group of
three students from the institute for the role of annotation
reviewers. All the reviewers were briefed on the task and
were asked to ensure that all feasible regions for navigation
were annotated in the image. Depending on the reviewers’
assessment, each annotation could be either accepted or sent
for re-annotation. An annotation was accepted if at least two
reviewers concurred on it. In the other cases, images were
sent for re-annotation with reviewer comments for annotation
refinement. This process was repeated iteratively until all
annotations were qualitatively and logically acceptable.

Since navigation is a flexible activity in terms of different
ways of performing it, we involved multiple people as
annotators and reviewers to capture different perspectives and
incorporate those in our dataset.

IV. METHODOLOGY

Given an image I from a front-facing camera on the
autonomous vehicle and a natural language command Q,
the goal is to predict the segmentation mask of the region
in the image where the vehicle should navigate to fulfil the
command. Here, the command Q corresponds to a navigable
action in the image. Compared to the traditional task of
Referring Image Segmentation, the proposed task is more
involved as the ground truth masks are unstructured. To
correctly identify the regions of interest, the model should be
able to learn correlations between words in commands and
regions in the image. We propose two models for this task,
a baseline model and another transformer-based model. The
feature extraction process is the same for both models. They
only differ in multi-modal fusion and context modelling. We
describe the feature extraction process in the next section
and describe each model in the subsequent sections.



A. Feature Extraction

We extract visual features from image using a
DeepLabV3+ [19] backbone pre-trained on semantic seg-
mentation task. Since hierarchical features are beneficial for
semantic segmentation, we derive hierarchical features Vi

of size Ci×Hi×Wi with i ∈ {2, 3, 4}, corresponding to
last 3 layers, namely layer2, layer3 and layer4 of CNN
backbone. Here Hi,Wi and Ci correspond to height, width
and channel dimension of visual features corresponding to
each level. Each Vi’s are transformed to same spatial reso-
lution Hi = H , Wi = W and channel dimension Ci = Cv

using 3 × 3 convolutional layers. We initialize each word
in the linguistic command with the GloVe word embedding,
which are then passed as input to LSTM encoder, to generate
linguistic feature for the command. We denote the linguistic
feature as L = {l1, l2, ..., lT }, where T is the number of
words in the command and li ∈ RCl , i ∈ {1, 2, ..T} is the
linguistic feature for the i-th word. In all our experiments,
Cv = Cl = C and H = W = 14.

B. Baseline Model

Our baseline model is inspired from [10], we first compute
the command feature Lavg ∈ RCl by averaging all the
word features li in L. In order to fuse visual features with
linguistic features, we repeat the command feature Lavg

along each spatial location in the visual feature map and
then concatenate the features from both modalities along
channel dimension to get a multi-modal feature Mi of shape
R(Cv+Cl)×H×W . Since the number of channels, Cv + Cl

can be large, we apply 1 × 1 convolution to Mi reduce
the channel dimension to C, resulting in final multi-modal
feature Xfinal

i ∈ RC×H×W .

C. Transformer Based Model

Our baseline model has few shortcomings: (1) the word-
level information is lost when all word features are aver-
aged to get the command feature. (2) multi-modal context
is not captured effectively with a concatenation of visual
and linguistic features. To address these shortcomings, we
propose a transformer-based model (TBM). We borrow from
the architecture of DETR [20] for our transformer based
model. Specifically, we adopt their transformer encoder, and
along with image features Vi, we also pass textual feature
L as input by concatenating features from both modalities
along length dimension, resulting in multi-modal feature Mi

of shape RC×(HW+T ), T is the number of words in the input
command. Mi is passed as input to the transformer encoder,
where self-attention enables cross-modal interaction between
word-level and pixel-level features, resulting in multi-modal
contextual feature Xi of the same shape as Mi. Since all
word features are utilized during the computation of Xi,
the word -level information is preserved, and because of
inter-modal and intra-modal interactions in the transformer
encoder, the multi-modal context is captured effectively. To
predict a segmentation mask from Xi, we need to reshape
it to the same spatial resolution as Vi, i.e., H ×W . So, Xi

is separated into attended visual features, Xv
i and attended

linguistic features, X l
i of dimensions RHW×C and RT×C ,

respectively. X l
i is averaged across length dimension and

concatenated with Xv
i along the channel dimension and

reshaped to result in a feature vector of shape R2C×H×W .
Finally, 1×1 convolution is applied to give final multi-modal
feature Xfinal

i ∈ RC×H×W .

D. Mask Generation

To generate the final segmentation mask, we stack Xfinal
i

for all levels and pass them through Atrous Spatial Pyramid
Pooling (ASPP) Decoder from [21]. We use 3×3 convolution
kernels followed by bi-linear upsampling to predict the
segmentation mask at a higher resolution. Finally, sigmoid
non-linearity is applied to generate pixel-wise labels for
segmentation mask Y . Both baseline and transformer-based
models are trained end-to-end using binary cross-entropy loss
between predicted segmentation mask Y , and the ground
truth segmentation mask G.

V. EXPERIMENTS

Implementation Details: We use DeepLabV3+ [19] with
ResNet-101 as backbone for visual feature extraction. Our
backbone is pre-trained on the Pascal VOC-12 dataset with
the semantic segmentation task. Input images are resized to
448 × 448 spatial resolution. We use 300d GloVe embed-
dings pre-trained on Common Crawl 840B tokens [22]. The
maximum length of commands is set to T = 40 and for both
visual and linguistic features, channel dimension C = 512.
Batch size is set to 64, and our models are trained using
AdamW optimizer with weight decay of 5e−4, the initial
learning rate is set to 1e−4 and gradually decreased using
polynomial decay by a factor 0.5.

Evaluation Metrics: In the proposed dataset, the ground
truth segmentation masks incorporate all viable regions of
interest for navigation, so any point inside the annotated
region can be used as a target destination. Considering this
aspect of our dataset, we evaluate our models’ performance
on three metrics, namely, Pointing Game, Recall@k and
Overall IOU. Pointing Game Metric (PGM) indicates the per
cent of examples where the highest activated point lies inside
the ground truth mask. It is calculated in the following way:

PGM Score =
# of hits

total examples
(1)

A hit occurs when the highest activated pixel lies inside
the ground truth segmentation mask. It is possible that in
some cases, the point with the highest activation is slightly
outside the annotated ground truth region. However, the
overall prediction is almost correct. Recall@k metric is used
to underscore the performance of models in such scenarios.
Recall@k metric is calculated as the proportion of examples
where at least one of the top-k points lies inside the ground
truth mask. Finally, we also show results with the Overall
IOU metic. Previous works commonly use the Overall IOU
metric [10], [13], [14] for RIS task, it is calculated as the ratio
of total intersection and total union between the predicted
and ground truth segmentation masks across all examples in
the dataset.



TABLE I
RECALL@k METRICS FOR THE VALIDATION AND TEST SET

Method
Recall @k for PGM

k = 5 k = 10 k = 50 k = 100 k = 500 k = 1000
Val set Test set Val set Test set Val set Test set Val set Test set Val set Test set Val set Test set

Baseline 51.84 69.80 52.71 69.80 55.29 72.20 56.92 73.80 64.49 79.60 69.64 83.80
TBM 59.67 77.00 60.53 78.20 63.19 79.60 64.91 81.80 72.65 86.60 78.07 90.20

TABLE II
PGM AND OVERALL IOU FOR THE VALIDATION AND TEST SET

Method
PGM Overall IOU

Val set Test set Val set Test set
Baseline 49.78 66.80 19.88 29.28
TBM 58.03 76.60 22.17 30.61

TABLE III
PGM FOR THE VALIDATION DATA WRT COMMAND LENGTH WHERE T =

NUMBER OF WORDS IN A COMMAND

Method PGM score on the Val set
T < 10 10 ≤ T < 20 T ≥ 20

Baseline 52.09 48.55 44.00
TBM 60.00 57.06 52.00

A. Experimental Results

In this section, we present the experimental results on
different evaluation metrics. For all metrics, we compute the
results on both validation and test split.

Pointing Game: Results on pointing game metric are
presented in Table II. First, we compare against a centre
baseline to showcase the diversity of localization of anno-
tated regions and ensuring that our dataset is free of centre-
bias. In this baseline, the image’s centre point is considered
as the point with the highest activation for the pointing game
metric. PGM score is 5.07%, and 6.61% for this baseline
on validation and test splits, respectively, thus clearing our
dataset for centre-bias. Next, we compare against the baseline
model presented in Section IV-B. Our baseline model gives
a PGM score of 49.78% and 66.80% on validation and
test split, respectively. The test split score is high as the
commands for the test split are simple and concise compared
to those in the validation split. The Transformer-Based Model
(TBM) gives higher numbers than both the baselines on both
splits. We observe an improvement of 8% and 10% over the
baseline model for validation and test split, respectively. This
improvement indicates the benefits of using the proposed
multi-modal attention in the transformer-based approach,
which can effectively model word-region interactions.

Recall@k: Since our model mostly predicts connected and
contiguous segmentation masks, Recall@k metric indicates
if we can approximately locate the correct area (where the
highest activation point is near the ground truth region).
Results for this metric are tabulated in Table I, we consider
values of k={5, 10, 50, 100, 500, 1000}. Recall@1 is the
same as pointing game metric as in both cases, we pick the
point with the highest activation. As expected, the metric
performance increases with the value of k. For transformer-

TABLE IV
PGM ON THE TEST SET WITH COMMANDS FOR VARIOUS MANEUVERS

Method PGM score on the test set
Stop/
Park

Follow Turn Maintain
Course

Go
Slow/Fast

Change
lanes

Baseline 62.83 72.91 74.19 50.00 76.31 68.74
TBM 75.12 88.23 86.59 83.34 77.15 84.62

based model, at k = 1000, metric score is 78.07% and
90.20% for validation and test splits, respectively. 1000
pixels account for ∼ 0.5% of the overall pixels at the
considered resolution. Hence, Recall@1000 metric suggests
that we can approximately locate the correct area 90.20% of
the time when using simpler and straightforward commands.
This demonstrates the effectiveness of our approach and how
we are able to reduce the search space for feasible regions
for navigation significantly.

Overall IOU: Since any point inside the annotated region
can be considered as a target destination, computing the
overall IOU metric that is normally used in segmentation
literature cannot serve as an adequate performance measure
and is only an indicative measure. For example. if there are
three parking slots available, even if the model predicts one
of them, the prediction is correct, however, the IOU might be
low. The results presented in Table II illustrate this aspect.
For the transformer-based model, the IOU metric is 22.17%
for validation split and 30.61% for the test split. The numbers
for test split are significantly better than those in validation
split because of the simplicity of commands in test split. This
metric illustrates the differences between RNR and RIS task
and shows that the same metric cannot be used to judge the
performance across these tasks.

B. Ablation Studies

In this section, we elaborate on the ablation and analysis
studies performed on the proposed dataset and transformer-
based model. We study various aspects of linguistic com-
mands in the proposed Talk2car-RefSeg dataset on model
performance. Specifically, we analyse the grounding perfor-
mance of our model based on (1) the length of command and
(2) the action specified in the command. As the commands
in the test split are shorter than those in validation split,
we conduct experiment (2) on the test split. Whereas based
on the verbose nature of commands in the validation split,
experiment (1) is conducted on the validation split. We used
both baseline and transformer-based models and the pointing
game metric for all the ablation studies.

Based on Command Length: We categorise the com-
mands based on their length and present the ablation ex-



“Pull over by the white van” “Park on the right by the green bin” “Follow the yellow car that is in the left

lane”

“pick up the woman on your left”

Fig. 3. Qualitative Results for Successful Groundings. Our TBM network is able to ground the appropriate regions even in cases where the referred
objects are barely visible. Red arrow is used to indicate the location of these referred objects.

“Do not turn right as I said, carry on

straight so I can talk to that person”

“Continue straight so I can talk to that

person”.

“Wait for the moped to continue before

we turn left”

“Wait for the moped to leave”

Fig. 4. Differences between the network performance on the original Validation set and the newly created Test split. For each image pair, example on
the left is from the Validation split and one on the right is from the Test split with simplified commands. The “person” in left pair of images is indicated

using a red arrow.

periments in Table III. All commands are grouped into
three buckets, {0-10, 10-20, ≥20} based on their length.
We observed that as the command length increases, the
performance on the pointing game metric decreases. The
performance gap between the first two buckets is ∼3% , and
that between the last two buckets is ∼5% in TBM. Since
the commands in the validation split are long and complex,
the network faces difficulties in grounding navigable regions
for them. Some of the original talk2car dataset’s commands
contain unnecessary information from a grounding perspec-
tive, like addressing people using proper nouns. Because of
this reason, we proposed a separate test split with concise
commands. Length based grouping of commands in test split
is not possible as the majority (∼78%) of them are less than
10 words long.

Based on Action type: Next, we classify each command
to fixed basic action/manoeuvre categories and present the
results on the pointing game metric in Table IV. For “lane
change” and “turning” type of commands, our network can
correctly predict the navigable region with high accuracy
of 84.62% and 86.59%, respectively. For “parking” based
commands, we get a pointing game score of 75.12%. Parking
is a challenging action to evaluate based on the Pointing
game metric. In our dataset, the annotation mask is often
relatively small for these cases, especially so when referring
to a far away parking slot. The highest performance is
observed on “follow” type commands, where the metric
is 88.23%. Commands with “follow” action is easier to
ground as in most cases, the navigable region is just behind
the referred object (hence are less ambiguous). Results on
these basic action/manoeuvre specific commands indicate

the generality and practicality of our approach in realistic
scenarios.

C. Qualitative Results
In this section, we present the Qualitative results of our

transformer-based approach. For all the example images in
this section, Green, Red and Yellow signify the ground truth
mask, the predicted mask and their intersection, respectively.
Success cases of our approach are demonstrated in Figure 3.
The model successfully correlates textual words with regions
in the image, ex: in the leftmost image, the model can
successfully ground the region beside the white van, which
is barely visible. Similarly, in the second image from the
left, there are two green bins, the model can successfully
resolve the ambiguity. The last two images demonstrate the
performance of our model during night-time. In these cases,
the referred object is barely visible, but the model can still
infer the correct region.

Next, we showcase the differences between the original
validation split and the newly created test split in Figure 4.
For the leftmost image, the command is a bit confusing as
there is a subtle negation involved. In order to resolve these
issues, the model should be trained on training data with a
large number of such instances. However, with the simplified
command, the model predicts the correct region. Similarly,
for the second image, the model gets confused when there
are multiple action words in the linguistic command. In this
particular case, the model correctly predicted two regions
corresponding to both actions “wait” and “turn left” despite
the ambiguity in the command. This underscores our net-
work’s capability in effectively modeling the word-region
interactions. After simplifying the command to include only



“Get into the next lane behind the car” “Park in between the black cars on

right”

“Switch to the middle lane” “Continue straight”

Fig. 5. Qualitative Results for same image with different linguistic
commands. Our network can successfully predict the correct navigable
regions for new commands, highlighting its effectiveness in adapting to
new commands flexibly.

“Pull over near the first trailer on the

right”

“Park next to the white truck on the left

side of the road”

Fig. 6. Qualitative Results for Failure Cases. Even though the network fails
to identify correct regions, it predicts a reasonable region near the referred
object without knowing the parking rules.

one action “wait”, the model correctly predicted the corre-
sponding navigable region.

In Figure 5, we further scrutinize our network by fixing an
image and modifying the commands to correspond to differ-
ent actions. Our network is able to incorporate the changes
in command and successfully reflect them in the predicted
map, highlighting the network’s versatility in understanding
the intent of various textual commands for the same visual
scene. This result showcases the controllability aspect of our
network, which is highly valuable for AD applications.

Some failure cases of our approach are shown in Figure
6. The results suggest that our model is able to locate the
“trailer” (in the first image) and the “white truck” (in the
second image). However, it fails to predict the navigable
regions accurately. Looking closely, in the first case, the
model is also able to understand the sub-phrases “left side
of the road” and “next to white truck”; however, it predicts a
place that is not appropriate for parking. The results clearly
indicate the difficulty in RNR, even after correctly grounding
the referred object.

VI. NAVIGATION AND PLANNING

We show a downstream application wherein the navigable
region output by the network is made use of by a planner
to navigate to the centre of the region. While there are
many potential ways of interpreting the navigable region by
a downstream task, for example, one could use this as an
input to a waypoint prediction network similar to [23], in this
effort, we proceed with the straightforward interpretation of
choosing the region centre as the goal location.

First, we extract the ground plane from the LiDAR scan.
Then we use LiDAR camera calibration to project the pixels
corresponding to the grounded area in the image to the
ground plane in the LiDAR scan. Finally, we use an RRT
based sampling algorithm to construct a path to the point
in 3D corresponding to the centre pixel of the region. This
results in executable trajectories that appear visibly accept-
able, as shown in the planned trajectories of Figure 7 for a
few samples from our dataset. More involved integration to
an AD application is a natural extension of this effort which
will be tackled in future work.

VII. CONCLUSION

This paper introduced the novel task of Referring Naviga-
ble Regions (RNR) based on linguistic commands to provide
navigational guidance to autonomous vehicles. We proposed
the Talk2Car-RegSeg dataset, which incorporates binary
masks for regions on the road as navigational guidance for
linguistic commands. This dataset is the first of its kind
to enable control of autonomous vehicle’s navigation based
on linguistic commands. Furthermore, we propose a novel
transformer-based model and present thorough experiments
and ablation studies to demonstrate the efficacy of our
approach. Through a downstream planner, we showed how
RNR task is apt for autonomous driving applications like
trajectory planning compared to the RIS task. This is the
first such work which has proposed RNR and showcased its
direct relevance to AD applications. In this work, we focused
on single frames for grounding; future work should focus on
grounding at the video-level, as it is a more realistic setting
for commands with temporal constraints.
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