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Abstract—We propose an approach in the form of a light
weight smart fuzzer to generate string based inputs to detect
buffer overflow vulnerability in C code. The approach is based
on an evolutionary algorithm which is a combination of genetic
algorithm and evolutionary strategies. In this preliminary work
we focus on the problem that there are constraints on string
inputs that must be satisfied in order to reach the vulnerable
statement in the code and we have very little or no knowledge
about them. Unlike other similar approaches, our approach is
able to generate such inputs without knowing these constraints
explicitly. It learns these constraints automatically while gener-
ating inputs dynamically by executing the vulnerable program.
We provide few empirical results on a benchmarking dataset-
Verisec suite of programs.

Keywords-fuzzing, evolutionary algorithm, buffer overflow,
vulnerability, data- and control-flow.

I. INTRODUCTION

“Security should be the internal property of the software”
is the phenomenon being exhibited by most of the security
organizations, e.g. [1]. Under this paradigm of software
development, security should be part of SDCL which implies
that right from the beginning, software should be tested
and verified for its security properties (for example, buffer
overflow (BoF) vulnerability detection). A software can be
tested statically or dynamically on its source (or binary)
code, known as white-box approach. This approach has
the advantage of having access to software’s internals, for
example, high-level code, control- and data-flow graphs
etc. On the other extreme lies black-box approach wherein
we do not have access to software internals. All we can
do is to pass inputs and observe outputs. Obviously, this
approach is less precise than the former one, but sometimes,
it is very practical and easy to apply on a software to get
quick results to a certain acceptability. In security literature,
this technique is also termed as fuzzing [2]. It should be
easy to observe the relationship between performance/result
and resources required to perform analysis by an approach.
White-box approaches are more complete in the sense of
providing larger coverage of vulnerabilities detection; but
they require more resources to conduct analysis. Black-box
approach, on the other hand, is less complete as it cannot
detect all the vulnerabilities whose detection is not straight

forward. For example, if there are constraints on inputs to
reach a vulnerable statement, fuzzing may have hard time to
generate inputs that can reach that statement. But black-box
based approaches require less resources to perform analysis.

Figure 1. Relationship between performance
and amount of resources/information required
by an approach for security vulnerability de-
tection.

Figure 1 depicts
this relationship
by showing
two clusters at
both end of the
curve. Cluster
A represents
approaches with
less detection
and less resource
requirement.
Approaches like
blind fuzzing falls
in this cluster.
Cluster B shows
approaches that provide more vulnerability detection with
heavy resource requirement. White-box approaches belong
to this cluster. As also shown in the figure as dotted curve,
in this study we want to distort the curve a bit by proposing
an approach which requires less resources to perform
analysis with comparable results with approaches belonging
to cluster B.

Recently, there has been an increasing interest in dynamic
analysis of vulnerabilities specially in the cases where there
are constraints on string inputs and task is to generate inputs
that satisfy those constraints and activate vulnerabilities
[3][4]. Dynamic analysis is very accurate (and faster) in
detecting certain vulnerabilities, but it faces a hard time in
executing paths that activate the vulnerability. This involves
the generation of inputs that execute the malicious path. As
mentioned above, such techniques learn about program’s
internal by doing a static analysis of the application to
gather malicious information flow, constraints on inputs etc.
and generate inputs, which is also termed as intelligent
fuzzing [5][6]. Looking from this perspective of dynamic
input generation, problem of generating valid inputs can
be mapped to searching for inputs that satisfy a given



path. Therefore, intelligent fuzzing can be considered as a
search problem. As a consequence, evolutionary algorithms
(EA) have been used to generate inputs for testing [7].
In this paper, we report our preliminary work that uses a
hybrid EA (genetic algorithm and evolutionary strategies) for
generating inputs to detect BoF vulnerabilities at runtime.
We propose an approach to vulnerability analysis which
generate string inputs without knowing constrains on these
inputs. To the best of our knowledge, ours is the first work
to explore the use of evolutionary strategies in dynamic
vulnerability detection. We make use of static code analysis
to generate vulnerability execution path by using taint data-
flow technique. Dynamic analysis is used to generate inputs
that execute that path. In order to learn constrains on inputs
and satisfying them, we borrow tools and techniques from
set-theory and indirect constraint handling approach of GA
[8]. We device a new fitness function that computes fitness
values for inputs based on the runtime dynamics of the
application, which in turn incorporates constraint handling.
A high level diagram of our approach is depicted in figure
2.
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Figure 2. Flow diagram of the proposed
approach wherein each major step is depicted
in a box.

Program
slicing is the
static analysis
component of
the approach.
It generates a
tainted path from
source (malicious
inputs) to sink
(vulnerable
statement1) i.e.
we get a sequence
of statements that
must be executed
to reach the sink.
Based on this
information, we
instrument the
source code at

statement level and execute it with inputs to generate
runtime statistics about the program in terms of statement’s
execution frequencies. Proposed EA generates newer inputs
from the runtime statistics. As we are targeting BoF
vulnerability, EA keeps generating inputs until we get
a program crash. At this point, we run the binary with
a debugger to collect information about various internal
structures containing information related to the crash. This
action is performed to get information that is useful in
order to generate real exploits. Based on this step, we can
infer how easy or difficult it is to exploit this vulnerability.

1Currently, we look for calls to well-known vulnerable functions like
strcpy, sprintf etc. In future, we plan to incorporate signatures for other
vulnerable patterns so that these can be used as ’sink’.

Thus our approach shows not only the presence of the
vulnerability but also its possibility of exploitation in the
real world. The main contributions of the approach are:
• Automated malicious input generation.
• New fitness function based on runtime program behav-

ior that handles constraint indirectly without knowing
them explicitly.

• Hints on the level of exploitability of a particular
vulnerability.

The rest of the paper is organized as follows: Section II
provides necessary background to cover topics used in our
proposed work, including taint data analyis and evolutionary
computing. We provide a detail description of the proposed
method in section III, which is followed by section IV on
experimental details and discussion. To draw some com-
parison, section V summerizes relevant work. Finally, we
conclude in section VI with a note on future work.

II. BACKGROUND

In this section, we briefly discuss few topics that are
building blocks of our method. Our intention is to generate
inputs that can activate a vulnerability such that all the
constraints along the path from source to sink are satisfied.
To make discussion convenient, we take the following C
code (listing 1) as an example:

1i n t copyData ( char ∗checkD , char ∗c2 , char ∗buf ){
2char ∗outD= buf ;
3char ∗c1 ;
4i n t n c h a r = 0 , outD = 0 ; / / i n d e x i n t o o u t f i l e
5f o r ( c1=checkD ;∗ c1 != ’\0 ’ ; c1 ++){
6i f (∗c1 == ’= ’ ){
7i f (∗c1++ == ’\0 ’ )
8break ;
9/ / =\n : c o n t i n u a t i o n ; s i g n a l t o c a l l e r i t ’ s ok t o pas s i n more i n f i l e
10/ / BAD: f o r g o t t o r e s e t o u t
11i f (∗c1++ == ’\n ’ ){
12n c h a r = 0 ;
13co n t i nu e ;
14}
15e l s e {
16i f (∗c2 == ’\0 ’ )
17break ;
18n c h a r ++;
19i f ( n c h a r > BASE SZ )
20break ;
21∗outD = ∗c1 ; /∗ BAD ∗/
22outD ++;
23}
24} . . .

Listing 1. Excerpt of a vulnerable C code from Verisec suite of programs.

The sample code in Listing 1 is taken from Verisec suite
of vulnerable programs [9]. This program is vulnerable
assuming that checkD and c2 are user controlled buffer
strings and buf is fixed size buffer (of length BASE_SZ).
If checkD contains more than one “=\n” (combination of =
and \n to pass checks at lines 6 and 11) ), buf can be over-
flowed by c2 (line 21). So, here the problem is to generate
a checkD string that contains “=\n” character sequence.
Following two techniques - taint analysis and evolutionary
computing - are used to solve the aforementioned problem.

A. Taint Analysis

As stated in the introduction we are interested in this paper
in path-oriented fuzzing, which is based on two successive
steps:



1) path selection: how to choose the paths to be exercised
by the fuzzer;

2) path execution: how to find the corresponding program
inputs.

We briefly discuss here how some dedicated taint analysis
techniques can help to answer the first question, the rest of
the paper being dedicated to the second one.

Taint analysis: Identifying the set of instructions
whose execution can be influenced by user inputs can be
achieved by using a (classical) technique called taint anal-
ysis. Roughly speaking, it consists in associating a (binary)
taint information to each program variable, at each program
location. Hence, a variable v is marked as “tainted” at
location l if the value of v at this location depends on a user
input. Let us consider, for example, the C function presented
in Listing 1. We assume here that, initially, parameters
checkD and c2 are tainted and buf is untainted. Then,
variable c1 becomes tainted at location 5 (it is assigned
checkD), and variable nchar becomes tainted at location
12 (it is assigned in the scope of a tainted condition, thus
its value is indirectly influenced by a user input).

Taint Dependency Sequences (TDS): Once a taint anal-
ysis has been performed, a useful information is to charac-
terize the set of execution paths (for instance on the control
flow graph) that effectively corresponds to tainted executions
leading to a vulnerable statement. In [10], a solution is
proposed by means of Taint Dependency Sequences (TDS,
for short). More precisely, each TDS t =< l1, l2, . . . , ln >
associated to a variable v is a sequence of program locations
li that a program execution path should traverse in order
to reach ln with an input-dependent value assigned to v.
Thus, if ln corresponds to a vulnerable statement, this TDS
set exactly characterizes the set of “dangerous” execution
paths. A TDS example obtained from Listing 1 is the
following: < 5, 6, 11, 5, 6, 21 >. It means that traversing
these program locations (in this order) is a way to reach the
vulnerable statement 21 with a tainted value of c1 (which
may correspond to a potential exploit).

The authors of [10] developed a tool, freely available from
[11] that computes TDS from arbitrary C programs. We used
this tool for the experiments presented in section IV.

B. Evolutionary Computing

Evolutionary computing (EC) is the branch of computer
science that draws inspirations from natural selection and
human evolution [12]. An evolutionary algorithm (EA) is
an algorithm based on the principles of EC. There are many
variants of EA. Most widely known variants are: genetic
algorithms (GA), evolutionary strategies (ES), evolutionary
programming (EP) and genetic programming (GP). A typical
EA has the following components:
• Population- a set of candidate solutions.
• Representation- definition of individuals belonging to

the population.

• Evaluation Function (fitness function)- measurement of
individual’s ability to provide desired solution.

• Parents selection mechanism.
• Recombination and mutation- mechanism to generate

new individuals (solutions) from older ones.
• Survival selection mechanism- selection of fittest indi-

viduals to generate new population.
Based on the representation of the individuals, recombi-
nation and mutation perform operations on individuals to
generate new candidate solutions. While recombination takes
two or more parents to generate new children, mutation
operates on a single parent to generate single child. These
two functions are seen as ways to bring exploration and
exploitation in the solution space respectively. Regardless
of variant being used, a typical EA performs the following
steps to solve a problem:

Algorithm 1 Pseudo-code of a typical evolutionary algo-
rithm

INITIALIZE population with random candidates
repeat

SELECT parents
RECOMBINE parents to generate children
MUTATE offsprings
EVALUATE new candidates with fitness function
SELECT fitest candidates for the next population

until TERMINATION CONDITION is met
return BEST Solution, if found

We elaborate on GA and ES a bit more as our proposed
method is inspired from these two algorithms.

In GA, recombination takes place in the form of crossover
by combining two parents to generate two children. Mutation
works by flipping bits of an individual (in case of bit-string
representation) or adding a small quantity to the existing
candidate solution (in case of real-values representation).
The rate (and amount) of change remains constant, irre-
spective of search space. One aftermath of this is that GA
may be trapped in local optima. ES, on the other hand, has
strategy parameters, associated with each candidate solution.
These strategy parameters often guide the mutation rate2.
Basically, strategy parameter brings in self-adaptation in
mutation rate. A typical method is to use Gaussian convolu-
tion for mutation [13]. Under this scheme, each individual
is represented as 〈x1, x2, ..., xn, σ1, σ2, ..., σn〉, where σi is
standard deviation, used to draw a random number from
Gaussian distribution with mean zero and standard devia-
tion σi. Therefore, each individual x is mutated to x′ by
performing following operation:

x′ = x + N(0, σ) (1)

In practice, σ may also undergo a change by the same rule
depicted in eq. 1. The purpose of using Gaussian distribution

2It should be noted that in ES, recombination is optional and applied on
two or more parents to generate one child and therefore, strategy parameters
are specific to mutation.



is that random number generated from it tends to be smaller
most of the time, but takes a jump to produce a large number
occasionally. The overall effect of this phenomenon is that
if search is trapped in local optima, an occasional jump
may bring it out of it and the search may begin towards
global optima. How often this jump is required is adjusted
by adapting σ, associated with each individual.

In our proposed method, we combine GA and ES to
produce a simple and better malicious inputs generation
algorithm. Our method is not fully ES as we do not associate
a separate σ with each individual. Rather we maintain a
global σ for the current generation. We use (µ, λ) ES
in our implementation. We start with a population of λ
solutions. Based on the fitness value, we choose µ fittest
individuals and apply recombination and mutation to form
λ/µ new children per individual. These newly generated
λ individuals replace old generation of λ individuals. The
choice of crossover over mutation is made using random
number from uniform distribution i.e. we use mutation, but
with a probability, we replace mutation by crossover. This
gives us the chance to maintain good features of parents,
while exploring more options to achieve optimal solution.
The specific details of various components are provided in
the next section.

III. PROPOSED APPROACH

Given a C program with string inputs, we calculate
TDSs for a set of tainted input and vulnerable statement.
Let t =< l1, l2, . . . , ln > be the chosen TDS. Based on
the each li, the source code is instrumented at statements
corresponding to each li so that at runtime, execution profile
of the program can be built in terms of frequencies of each
of the lis. Initial population I consists of randomly generated
strings of ASCII printable characters. To calculate the fitness
value of each i ∈ I , we define fitness function Fi as follows:

Fi =
k∑

j=1

wj × fij (2)

where wj ∈W corresponds to weight associated with lj ∈ t
and fij is the execution frequency of lj for i ∈ I . W is
the set of weights for each TDS t. Selection of appropriate
values for W is of paramount importance for our fitness
function to yield good results. For example, if we choose
to select equal weights for each ljs, and there is a nested
structure in the program such that one (or more) lj is at inner
most nested statement (line 11 in Listing 1), then it will be
executed very less time, as compared to lj at outer most
statements. As a result, inputs which are reaching only till
outer statements will also have a high fitness values, thereby
giving EA a wrong fitness impression. Therefore, for such
situation, we need to assign a higher weight to inner one
as compared to outer one. To tackle this issue, we propose
following approach:

Dynamic Weight Calculation: Runtime analysis reveals
a lot about execution trace of the program by means of
frequencies corresponding to ljs. In [14][15][16] the authors
discuss the dynamic analysis of program by means of
frequency spectrum analysis. In particular, by observing
the frequencies of statements, branching structure can be
approximated to some extent. As discussed in above section,
it may be noted that rare executed statements will have low
frequencies as compared to easily executed ones. It may also
be noted that statements lie deep inside a nested structure
belong to rare statements. Therefore, frequency spectrum
of ljs captures IsNested type of structure among ljs. To
calculate frequency spectrum, we start with a set of inputs
I := 〈i1, i2, ..., im〉 to get a frequency matrix freq =

( ···
fij
···

)
,

where fij is the frequency of lj for the input i ∈ I . Based
on the above assumption, we calculate weights dynamically
by counting global frequencies of ljs and inverting them i.e.
for a set of inputs I and the matrix freq, the weight wj of
lj is calculated as follows:

wj =
1

m∑
i=1

fij

(3)

Another heuristic is that labels in TDS, which are closer
to vulnerable statement should have larger weights than the
ones which are relatively away. This is because any input
which is reaching nearer to vulnerable statement has greater
chance of reaching the vulnerable statement. Given this, we
multiply weights with a function whose value increases as
we move from beginning to end in a TDS. One example
of such function may be the indices of the elements in the
TDS i.e. for lj ∈ t, the function value will be j. Therefore,
considering above formulation in mind, we update wj of
eq. 3 as wj ← wj × j. Substituting the values obtained by
updated eq. 3 into the eq. 2, we get the fitness value of each
input. These values are sorted in descending order to select
µ inputs to be used in recombination and mutation.

Recombination: From µ fittest inputs, we randomly
choose two inputs and perform 4-point crossover, which is
akin to discrete recombination of ES to form one new input.
For example, let n1:= ABCD and n2:= EFGH be two chosen
inputs, then new input is AFCH.

Mutation: Mutation is the main component of the ES
based techniques. We perform mutation on individual inputs
by adding or replacing characters which are generated from
a different set of characters M . For example, let input be:
ABCDE, then mutation can generate following strings with
new characters xy ∈M : ACDE — xyABCDE — ABxyCDE
— ABCDExy. In the proposed method, this is the main step
which is responsible for learning constraints automatically.
As we start with no knowledge about the constraints that
should be satisfied by the inputs, we desire that M should
contain these characters. We resort to set-theory definitions



to present heuristics for approximating these constraints.
The symmetric difference between two sets A and B

is defined as A 4 B = (A ∪ B) \ (A ∩ B). It contains
elements which are either in A or B but not in both. If
we calculate a set diff1 = i1b 4 i2b (i1b and i2b are
first two best inputs), it should be containing characters that
contributed in making i1b, i2b best3. There could still be few
bad characters present and good characters absent in diff1.
If we look at worst inputs (we denote them by i1w and
i2w), we can learn something about these characters. These
inputs are worst because either they have bad characters or
they do not have good characters. Therefore, if we calculate
diff2 = i1w 4 i2w, it may captures few good characters
as well4. Initialized as empty set, in each generation, the
set M will be updated as M := M ∪ (diff1 4 diff2).
The underlying idea of doing so is that this set should serve
as the over-approximation of set of characters, constituting
the constraints. But this set tend to be large and therefore,
probability of choosing the right character is less. There
should be way to reduce it. This is where we use Gaussian
convolution. It should be noted that during few initials
generations, the difference between the best and worst inputs
is high. For first few generation (e.g. till 2nd generation),
we calculate a set notImp = (i1b ∩ i2b) ∩ (i1w ∩ i2w).
With Gaussian normal distribution, we update M as follows:
if N(0, σ) > large number, M := M \ notImp. As
noted, set M may not contain few good characters and as
a result, search will be trapped in local optima. In order to
continue, we need a jump which is brought by adding new
characters in M as follows: if N(0, σ) > large number,
M := M ∪new chars, where new chars is a small set of
characters which are not there in M .

Remaining steps are performed according to (µ, λ)-ES al-
gorithm as discussed earlier. Algorithm 2 shows the pseudo-
code of the proposed method.

With this heuristic, we approximate the set of characters
that should be present (or absent) in the string inputs in order
to activate the vulnerability. Once a malicious input is found,
we run the vulnerable program with a debugger to find out
stack related information, like stack register contents. The
purpose of getting this information is to further validate the
exploitability of the vulnerability. Using such information,
we can infer as how easy (or difficult) it is to write a real
exploit for the vulnerability.

IV. EXPERIMENTATION AND DISCUSSION

This section details on implementation of the framework
and a set of experiments to validate the approach. We

3It will also contain futile characters, but we cannot eliminate them
completely.

4It may contain few bad character also, but chances are less as being the
worst inputs, bad characters should be common to them and therefore will
not be included in symmetric difference. On the other hand, good characters
are very less likely to be common to them and therefore, will be present
in symmetric difference.

Algorithm 2 Pseudo-code of the proposed EA based ap-
proach

INITIALIZE population I with λ random candidates
TERMINATION CONDITION: program crashed or 1000 iterations are over
M ← {}
repeat

EXECUTE program with I
CALCULATE fitness
CALCULATE diff1, diff2 and notImp (till 2 generations)
UPDATE M as M ←M ∪ (diff14 diff2
if N(0, σ) > large number then

M ←M \ notImp
end if
if N(0, σ) > large number then

M ←M ∪ new chars
end if
SELECT µ fitest candidates for the next population
for each of µ candidates do

if probability mutation then
for i = 1 to λ/µ do

MUTATE candidate using M
end for

else
for i = 1 to λ/µ do

SELECT two parents randomly
RECOMBINE parents to generate child

end for
end if

end for
UPDATE I with newly generated candidates

until TERMINATION CONDITION is met

further discuss some of the findings observed during the
experimentation including limitations of the approach.

From implementation perspective, the present work is
composed of two major components- static analysis to get a
program slice and EA based dynamic analysis. Static analy-
sis is performed using STAC. Details of its implementation
can be found in [10]. After the source code is analyzed by
STAC, we get a set of TDSs that covers each and every path
from various inputs to that statement.

Dynamic component is composed of instrumented binary
of the program, EA to generate inputs and an interface to
communicate with a debugger to get after-crash information.
In this study, we choose to work with GDB. Based on a
particular TDS for a vulnerability, we instrument lines in
source code corresponding to the chosen TDS. For example,
for the code given in listing 1, the TDS that we select is
〈5, 6, 11, 5, 6, 21〉 for the vulnerable statement at line 21.
Therefore, we instrument statements after each of these
labels- 5, 6, 11, 21. In this way, at runtime, we get exe-
cution trace of the program in terms of executed statement’s
frequency. As TDS includes control flow of the program,
we get to know which branch of a conditional statement is
executed. This is important to generate/select inputs which
take the right branch.

EA is implemented as Python module. Inputs to EA
module are instrumented binary and chosen TDS. EA is
run until we get SIGSEGV signal or a predefined iteration
threshold is reached. We look for SIGSEGV signal because
BoF will result in invalid memory reference or segmentation
fault. Once we get malicious inputs corresponding to the



SIGSEGV signal, with the help of another Python module,
we run the binary with GDB to get information after the
crash which includes various stack register contents.

A. Experimentation

For empirical results, we experiment with Verisec
benchmark suite [9]. The suite consists of snippets of
open source programs containing BoF vulnerabilities of
varied difficulties. For us the level of difficulty is directly
proportional to the manipulation done on the tainted input
by the program i.e. if there are checks on the input before
it reaches the vulnerable statement, it is harder to generate
such input. From this perspective, we find that Verisec suite
has programs as simple as bind-> CVE-2001-001->
nslookupComplain-small_bad.c, wherein
generating a larger random string overflows the buffer,
to as hard as edbrowse-> CVE-2006-6909->
ftpls->strchr_bad.c wherein input should contain
(or does not contain) specific characters (at specific
positions) in order to reach the vulnerable statement.

Table I shows the findings of our analysis on three
programs which do string (inputs) manipulations before
letting it reach the vulnerable statement. We compare our
results with two other approaches- random fuzzing approach
and GA approach with the knowledge of characters that are
being checked at various positions in TDS (i.e. constraints
are known). For the second approach, we implement GA
module and analyzed the code statically to get constraints.
In this case, the initial population is drawn from a limited
ASCII character set and the set M has much fewer important
characters.

Table I
LIST OF THE PROGRAMS USED IN EXPERIMENTATION AND

CORRESPONDING RESULTS

S.No. Application Name #
LoC

Constraints EA GA Random

1 sendmail mime
fromqp

65 ’=n’ 154 20 3705

2 sendmail buildfname 52 ’&’ and
not(,;%)

16 6 96

3 edbrowse ftpls 49 ’-- ’ (in
the begin-
ning)

* 35 *

In the table, columns 2–3 denote the vulnerable program
in the Verisec suite. Column 5 shows constraints that an
input must satisfy in order to reach vulnerable statement.
Column 6 shows the number of iterations (generations)
taken by our approach to generate inputs that crash the
application. These numbers are average taken over 20 dif-
ferent runs. In the case of edbrowse program, out of 20
times it could generate malicious inputs only 4 times at the
iteration number 800, 85, 224 and 985. Column 7 shows the
same for pure GA based method with constraint knowledge.
The last column shows the number of iteration taken by

random fuzzing approach. In the case of edbrowse program,
it could not generate malicious inputs. This comparison
shows the effectiveness of EA enabled inputs generation
viz-a-viz randomly generated inputs, specially in the case,
when we have knowledge about the precise path to reach
the vulnerable statement by means of TDS. Following we
show a typical output of our tool for the program at S.
No. 3 in the table. In that program, there exists a BoF
when strcpy() is called with the fixed length buffer
user[USERSZ] and user controlled input. Before calling
strcpy(), the input string must have ’-- ’ as first three
characters. For convenience, we denote <space> by S in
the output shown in figure 3. Line 2-4 shows the malicious

1 Generation# 85
2 Malicious inputs: --S--%-aSa*-n**naSa1b=4*7e56ekg*2fie*
3 1S**n11%a1*an1as%%n-*-1sa*11%%%1s1Sn%%*-%%a-1%1%-S-a*-*
4 *%***na%1n**111%-ansn-%aaa**s-**aS*n1- .....
5 Calling GDB...
6 EIP is overwritten by: 1s1S at index: 68
7 EBP is overwritten by: 1%%% at index: 64
8 ESP is pointing to: n%%*-%%a-1%1%-S-a*-**%***na%1n**111
9 %-ansn-%aaa**s-**aS*n1- .... at index: 72

Figure 3. Output of the tool.

input that caused the program to crash, followed by its length
107. Line # 6 shows the status of eip which is overwritten
by 1s1S at an offset 68 in the string and line 9 shows the
contents pointed by esp at offset 72. With this information,
one can construct a real exploit with the following skeleton:
<--S...Ax67...><4 bytes address to ’jump esp’ instruction>
<...shellcode..(starting at 72th byte>

Based on this information, we can infer that it is easy to
exploit edbrowse program. On the other hand, in the case
of program shown in listing 1, we find it difficult to exploit as
values of eip, esp were not always affected meaningfully
by user controlled input which makes it hard to construct a
meaningful exploit.

B. Discussion

Table I shows a clear distinction among the three ap-
proaches viz. proposed EA based approach, GA assisted
approach with partial knowledge of constraints and the ran-
dom fuzzing. As expected, EA based approach outperforms
random fuzzing by a huge difference, given the fact that
both have no knowledge of constraints. GA based approach
performs better than the proposed one mainly because in
the former case, initial population is seeded with special
characters (constraints on inputs) known a priori and the set
M contains limited characters including special characters.
As a consequence, probability of selecting the right character
during mutation is higher, making it converging to the
desired input faster. On the other hand, EA based approach
starts with all printable ASCII characters. The set M is

5It could not generate malicious inputs 5 times out of total 20 times. So
the average is taken over 15 iterations



updated at runtime by learning from best and worst inputs.
As a result, normally set M has large set of characters which
makes it probabilistically difficult to select right characters
during mutation. This explains why does it performs better in
the case of program 2 than in programs 1 and 3. Program 3
is even more complex as it has constraints on the position as
well as on the sequence of characters. The desired input must
be of the form “-- any character string”. Therefore, in the
case of GA based approach with smaller M , probability of
generating such a string is still higher when compared to
our approach. Nevertheless, one interesting thing to note
about later case is that though it could not generate the
correct string frequently, we observe that set M contains the
special characters for the corresponding program. Therefore,
one limitation of the proposed approach that we can note
immediately is that constraints on position and sequence
of characters (more than 2) together are hard to solve. We
need to find some heuristic to reduce the size of M and
to incorporate the notion of position in mutation. Another
rather obvious limitation is that it cannot generate string
which contains longer substring as a constraint, specially
when it is a valid world of a grammar e.g. English words.

V. RELATED WORK

A. String constraint solving

Popularity of web-based applications and ever increasing
attacks on such services has given enough motivation to
develop techniques for vulnerability detection for such ap-
plications where tainted malicious inputs are mainly strings.
Therefore, apart from executing path from tainted source
to sink, another challenge is to generate strings that sat-
isfy all the constraints along the path. Recently, in [3] a
solver, called HAMPI, is proposed for strings constraints.
HAMPI normalizes the inputs into the core forms to express
memberships to many regular expressions. These regular
expressions also serves as patterns for a given vulnerability
(e.g. SQL injection). After converting them to bit-vectors, a
solver is applied to solve the constraints and if satisfiable, a
string is generated that satisfy all the constraints along the
path. However, in order to use HAMPI, all the constraints
should be known a priori which may be a difficult task
for certain complex applications. Another approach by Yu
et al. makes use of DFA based forward and backward
analysis of the intermediate nodes on the path from source
to sink [4]. The idea is to generate a regular expression that
represents vulnerability signature i.e. a pattern for malicious
inputs. During forward and backword analysis, a DFA is
constructed to denote a regular expression which is based on
a vulnerability pattern. This regular expression represent the
input that can exploit the vulnerability at the sink. Again, in
this study also, user should be knowing constraints in terms
of regular expression.

B. Forward symbolic execution

Symbolic execution is a general technique which allows
to reason about a whole set of program executions at one
time. Program states are represented by logical formulas,
that are updated when assignments are executed. When a
conditional statement is encountered, one of the branch is
chosen, and the corresponding predicate is added to a so-
called path-condition (the conjunction of all the predicates
to be satisfied in order to reach the current state). Using
this technique, deciding if a vulnerability (e.g., a buffer
overflow) can occur at a given location l can be reduced
to a satisfiability problem: is there a valuation of inputs that
satisfy the path condition for reaching l in a program state
which “activates” the vulnerability. Depending on the logic
used to express such a constraint (and hence on the data
types and predicates encountered in the original program) it
can be solved by an automated tool (like SMT solvers).

Several vulnerability (or error) detection tools have been
developed using this technique; one can cite for instance
PATHCRAWLER [17], SAGE [18], DART [19], CUTE [20],
EXE [21], or PEX[22]. One of the main issues in forward
symbolic analysis is the so-called path selection prob-
lem [23], which consists in deciding which branch to follow
first in case of conditional statement (with the risk of getting
stuck inside loops those termination cannot be detected).
In most cases the main objective is to increase some path
coverage criterion. Classical strategies are then depth-first
search, breadth-first, or even random searches. A more recent
solution, called “Dynamic Symbolic Execution5” (DSE)
consists in executing the program first using concrete input
values, collecting the set of predicates traversed during this
execution, and looking for a new input valuation which
satisfies all these predicates but one (hence leading to a new
execution path).

Recently, an extension of the PEX tool has been proposed
which includes a fitness-guided search strategy to “drive”
the execution towards a particular test target (e.g, a not-
yet-covered branch) [24]. The fitness function they use to
score a given execution is based on a distance computation
between the valuation of a target predicate obtained for
this execution, and the valuation required to satisfy the
predicate. The next input is then chosen by flipping the
most promising branching node of the best path executed so
far (according to the fitness function). Compared with our
proposal, this approach still requires the use of a constraint
solver. Moreover, it does not allow to target an explicit
(tainted) path.

The work by Brumley et al. [25] proposes a technique-
APEG to generate inputs that exploit a given vulnerability.
From smart fuzzing standpoint, their work adds a way to
learn (new) constraints on inputs and source of vulnerability.
This is accomplished by comparing patched and un-patched

5or concolic execution



version of the same application. After learning constraints,
it follows the standard way of using a constraint solver to
solve the constraints and based on this solution, generate
inputs. Our approach tries to learn constraints (i.e. checks)
without the patched version.

C. Evolutionary computing

Genetic algorithms have been used to generate test cases
for program testing [26][7]. We find only one reference
on the application of ES in software testing [27]. In that
study, (µ + λ) − ES is used to test C programs that takes
real inputs. Empirical results show a clear advantage of
ES over GA. In our study, however, we tweak a bit the
traditional usage of ES and apply it on string inputs. Grosso
et al. have used GA to generate inputs automatically that
trigger BoF vulnerability in the application [28][29]. The
fitness score of input is based on its ability to covering
maximum code and reaching vulnerable statements and
weights associated with each of these factors. They have
used linear programming to adjust weights automatically
which is an additional step in the whole process of input
generation. In our approach, we have used readily available
statements frequencies to approximate nested statements and
their weights. Sidewinder is a tool for analyzing binaries
to detect vulnerabilities using GA assisted fuzzer [30]. In
this approach, control flow is modeled as Markov Process
and fitness function is defined over Markov probabilities
associated with state transition on control flow graph. Inputs
are generated using grammatical evolution. However, there
is no mention of tackling constraints while generating inputs.
Our approach is close to this approach with added feature
of simplifying the weight calculation and path to traverse to
reach vulnerable statements, even in the presence of simpler
constraints. On the similar lines, Liu et al. construct control
dependence predicate path (CDPPath) from the binary of
the application and apply GA to construct inputs to reach
vulnerable statements [31]. Their fitness function depends
on the number of predicates in CDPPath covered by inputs.
However, this study treats each predicate equal which may
result in stagnation during later stage of searching and in
contrast to our approach, does not try to satisfy the string
constraints as such.

VI. CONCLUSIONS AND FUTURE WORK

We present preliminary results of our work on smart
fuzzing using EA. We note that majority of the programs
that are vulnerable to BoF attack accepts strings as inputs
from users and manipulate them in dangerous way. However,
in many cases, there are certain checks performed on strings
to validate it as per structural requirements. This poses
certain constraints on input strings. In order to activate the
vulnerability, input strings must satisfy these constraints. Our
intention is to generate strings that have potential to exploit
a given BoF vulnerability without knowing these constraints

a priori. These constraints are learnt as inputs are evolved
by using EA. We make use of set-theoretical definitions
to approximated such constraints. We conduct a set of
experiments to test our approach and we find promising
results. However, as another outcome of experimentation, we
note down certain shortcomings and hurdles in our approach
which constitute our future work.

As mentioned earlier, we plan to investigate the feasibil-
ity to reduce set M further by applying some heuristics,
for example, learning operands of comparison operator at
runtime by instrumenting the code. Another improvement
could be to keep more information on string structure, for
example, ordering and relative position of characters etc.
Currently, our method requires source code of the program
to be analyzed to get program slice (tainted data path).
Therefore, finally we intend to perform such analysis on
the binary of the program which extends its usage to more
applications where source code is not available (e.g. COTS).
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