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Abstract—Vulnerability analysis is one among the important
components of overall software assurance practice. Buffer over-
flow (BoF) is one example of the such vulnerabilities and it is
still the root cause of many effective attacks. A general practice
to find BoF is to look for the presence of certain functions
that manipulate string buffers, like the strcpy family. In these
functions, data is moved from one buffer to another, within a
loop, without considering destination buffer size. We argue that
similar behaviour may also be present in many other functions
that are coded separately, and therefore are equally vulnerable. In
the present work, we investigate the detection of such functions
by finding loops that exhibit similar behaviour. We call such
loops Buffer Overflow Inducing Loops (BOIL). We implemented
a lightweight static analysis to detect BOILs, and evaluated it on
real-world x86 binary executables. The results obtained show that
this (simple but yet efficient) vulnerability pattern happens to be
very effective in practice to retrieve real vulnerabilities, providing
a drastic reduction of the part of the code to be analysed.

Index Terms—Buffer overflow, security vulnerability, depen-
dency chain, loop detection, static analysis, binary code.

I. INTRODUCTION

Vulnerability detection techniques, and more particularly
buffer overflow detection techniques (which is still reported
as 3rd most dangerous software error [1]), have been al-
ready widely addressed by the research community. Roughly
speaking, the proposed techniques can be classified into two
categories:

• The static approaches, consists in performing some code
analysis (usually based on data-flow analysis or abstract
interpretation), without executing the application. The
objective here is to detect potential programming flaws,
that are known to be vulnerability prone. It could range
from taint-dependency analysis (to detect that a user input
can be written into a buffer), to more sophisticated value-
analysis (to detect that a buffer can be accessed out of
its bound). The success of these approaches essentially
depends on the trade-off they provide between the ex-
ecution cost (i.e., how precise is the analysis) and the
number of false positives they give. Typical existing tools
are CodeSurfer[2] and Parfait[3].

• The dynamic approaches, consists in executing a (mon-
itored) instance of the application, in order to “reveal”
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some unexpected behaviour. This category includes pop-
ular fuzzing techniques enhanced with dynamic symbolic
executions, or genetic-based testing. Since only a part of
the application can be exercised, a difficulty here is to
choose the inputs that are more likely to trigger some
vulnerability at execution time. Typical existing tools are
BitBlaze[4], SAGE[5], Dytan[6], etc.

A natural trend is to try to combine these two categories in
order to “guide” the dynamic analysis towards some potential
flaws that have been detected statically. This can be done
for instance by identifying some vulnerability patterns, cor-
responding to pieces of code containing potentially vulnerable
instructions.

A. Vulnerability patterns

A simple solution consists in defining vulnerability patterns
at the syntactic level. This is the case for instance when focus-
ing the search on well-known vulnerability prone functions. A
typical example is the strcpy family of C/C++ functions,
that are notorious for buffer overflow vulnerabilities. As a
result, many dynamic vulnerability analysis studies consider
known library functions as target (or sink) for tainted data
flow (e..g [7]). However, the main culprit for the introduction
of the vulnerability it is not the function itself, but the way
this function manipulate data.

For example, strcpy function copies the source string
buffer to destination string buffer without considering the
length of the destination buffer. This data movement is done
within a loop based on the length of the source buffer.
However, such a behaviour can occur in many other functions,
not belonging to the strcpy family.

The objective of this work is to consider more of “semantic”
definition of vulnerability patterns, based on some criteria that
can be checked by means of lightweight static analysis, from
binary code. Note that similar views are also presented in [8],
but to the best of our knowledge, there is no formalism and
implementation presented so far.

To make this position more precise, let us consider the
function shown in listing 1:

In this function, Src and Dest are pointers to the source
and destination buffer which are passed to the function as
arguments. A local variable *p is defined, and its value is set
as Dest. There is a while loop that iterates over Src and



1 char ∗ bufCopy ( char ∗Dest , char ∗Src )
2 {
3 char ∗p = Des t ;
4 whi le (∗ Src != ’\0 ’ )
5 {
6 ∗p++ = ∗Src ++;
7 }
8 ∗p = ’\0 ’ ;
9 re turn Dest ;

10 }

Listing 1. Example of a function that is similar to strcpy

moves the corresponding characters to p (i.e., to the destina-
tion). Functionality wise its behaviour is similar to strcpy()
function. Therefore, while performing a vulnerability analysis,
if we look only for calls to strcpy family, we may be missing
several other vulnerable functions.

Several features in this code are likely to make this function
vulnerable (aka bad code smell):

• it contains a loop;
• the loop involves a buffer traversal, which means that the

memory location which is being read/written is changing
at each loop iteration;

• the destination buffer written in the loop has been passed
as a function argument, which makes its size unknown
inside this function;

• the source buffer is also passed as a function argument,
which makes this content/length non controllable inside
the function (it may be derived from user inputs without
any sanity checks);

• the number of loop iteration is neither fixed, nor does it
depend on the destination buffer.

In the next section we define more precisely which of these
features we could consider in our context to classify this
function as vulnerable.

This observation is in conformance with Microsoft C/C++
compiler’s definition of vulnerable function (The definition of
a vulnerable function is one that allocates a type of string
buffer on the stack.) when inserting /GS flag1. However, we
feel that the above definition is too conservative in the sense
that mere the presence of buffer does not make it vulnerable,
but there should be some interesting operation on this.

B. Defining BOPs and BOILs

The features that make a strcpy-like function potentially
vulnerable cannot be addressed by lightweight static analysis.
Indeed, most of them are even undecidable in general. As a
result, we have to restrict ourselves to some simpler criteria,
while still able to reflect potential vulnerabilities.

From this point of view, we propose that a function is worth
analysing rigorously if it involves Buffer Overflow Inducing
Loops (BOIL). We call such a function Buffer Overflow Prone
(BOP) function. A loop is a BOIL if there is memory write
within the loop and that memory is changing within the loop.

1http://msdn.microsoft.com/en-us/library/8dbf701c(v=vs.80).aspx

This is a very loose definition and we may include other
constraints like the number of iterations should not be fixed
or should not be based on destination buffer, etc.

In this work, we analyse the binary executable of the
application to find BOP functions (i.e. functions with BOILs).
The main motivation to analyse binary is manifold:

1) It is a general practice to use third-party’s libraries those
source code is not available.

2) There is significant difference between the source code
of the application and the machine code ultimately
run [9].

3) Multi-language applications that are complied to one
common byte-code (e.g. .NETish languages).

4) Analysing the executable file increase the scope of such
analysis specially in the case of COTS softwares.

C. Contribution and structure of the paper

While the above definition of BOIL is simple and short,
detecting such loops in binary executables is challenging.
Apart from discovering the control structures in the executable,
tracing the memory access imposes biggest hurdle. On the
top of that, we observe that memory access and loop body
structure are compiler dependent and compilers may not follow
the same rules always. In the following sections, we elaborate
such points and propose a method to detect such loops.

The rest of the paper is organised as follows: section II cov-
ers the basic problem and the way we formalise the solution.
Implementation details are described in section III, which is
followed by the section IV to add a small improvement to the
main proposal. The section V provides details on experimental
results. As a reference, some of the related work is provided
in section VI. We conclude the article in section VII by
summarising the current work and some future directions.

II. BOIL DETECTION

First, we give some intuition on how buffer-accessing loops
are translated by the compilers. This will give us some (simple)
criteria to detect such patterns in executable code. Then we
formalise these criteria in terms of specific dependency graphs
that can be extracted from loop bodies. These results will be
used to develop the BOIL detection algorithm presented in
section III.

A. Understanding the Difficulty

Let us consider an array X accessed in a loop body L, and
assume that c is invariant inside L (its value is constant), i is
the loop induction variable, f is a (side-effect free) function,
and that y is an arbitrary value (that may change or not at
each iteration). According to [10], write access patterns to X
can be classified into three main categories:

• Constant access: the same memory location is accessed
at each iteration, as in X[c] = ....

• Stride access: memory locations are accessed with a fixed
stride, representing the distance between two successive
write addresses, as in X[f(i)] = ...



1 004075 F0 s t r c p y
2 004075 F0 push e d i
3 004075 F1 mov edi , s s : [ ebp+ Des t ]
4 004075 F5 jmp loc 407661
5
6 00407661 mov ecx , s s : [ ebp+ Src ]
7 00407665 t e s t ecx , 3 −−> e x i t t h e loop
8 0040766B j z loc 407686
9

10 0040766D mov byte dl , byte ds : [ ecx ] <−−−
11 0040766F i n c ecx |
12 00407670 t e s t byte dl , byte d l |
13 00407672 j z loc 4076D8 −−> e x i t t h e loop |
14 |
15 00407674 mov byte ds : [ e d i ] , byte d l |
16 00407676 i n c e d i |
17 00407677 t e s t ecx , 3 |
18 0040767D jnz loc 40766D −> loop back t o −−−

Listing 2. Assembly code of the strcpy function

1 00401000 bufCopy
2
3 00401010 mov eax , s s : [ ebp+ Src ] <−−−
4 00401013 movsx ecx , byte ds : [ eax ] |
5 00401016 cmp ecx , 0x0 |
6 00401019 j z loc 40103C −−> e x i t t h e loop |
7 |
8 0040101F mov eax , s s : [ ebp+p ] |
9 00401022 mov ecx , eax |

10 00401024 add eax , 0x1 |
11 00401027 mov s s : [ ebp+p ] , eax |
12 0040102A mov eax , s s : [ ebp+ Src ] |
13 0040102D mov edx , eax |
14 0040102F add eax , 0x1 |
15 00401032 mov s s : [ ebp+ Src ] , eax |
16 00401035 movsx eax , byte ds : [ edx ] |
17 00401038 mov byte ds : [ ecx ] , byte a l |
18 0040103A jmp loc 401010 −−> loop back t o −−−−

Listing 3. Assembly code of the loop body of function bufCopy

• Non-monotonic: memory locations are accessed in a
random way, or at least the access pattern is based on
some complex expression, that cannot be easily identified
from a static point of view, as in X[f(y)] = ...

Clearly, item 1 cannot lead to a buffer overflow (with respect
to buffer X), and item 3 is not regular enough to be analysed
in an automated way. Moreover, such memory access is less
likely to be interesting for buffer overflow based exploits.
On the other hand, item 2 is commonly encountered and
it corresponds to a typical array traversal situation. In the
following we will consider only this later case and, therefore,
focus on stride memory accesses.

At the source level, stride memory accesses corresponding
to array traversals are most of the time encoded using address
expressions relative to the previously visited element, as in
listing 1 (*p++ = ...). To better understand how such high-
level access patterns are translated into binary code, let us
consider two listing of assembly code: an excerpt of the code
of strcpy (listing 2), and an excerpt of the code produced
from function bufCopy (listing 3). These assembly codes
have been slightly modified to make them more readable (see
below).

Let us first consider the listing 2. Function strcpy() takes
two arguments, Dest and Src, indicating the addresses of the

destination and source string buffers respectively. Arguments
and local variables are stored on the execution stack. Their
addresses on the stack are expressed as offsets with respect
to the base pointer, noted ebp in x86 architectures. In this
listing, ebp+Dest (resp. ebp+Src) denotes the address of
Dest argument (resp. of Src argument), whereas [ebp+Dest]
(resp. [ebp+Src]) denotes the memory location pointed to
by ebp+Dest (resp. ebp+Src), namely the addresses of the
first character of the destination buffer (resp. of the source
buffer). The loop body (copying each source character into the
destination) lies between lines 10 and 18 (the arrow from line
18 to 10 indicates the loop back-edge). In terms of memory
accesses, the code detail can be sketched as follows:

• the addresses of the first characters of Dest and Src
buffers are copied into registers edi and ecx (lines 3
and 6), outside the loop body;

• the character pointed to by ecx (namely the current
Src element) is copied into register dl, then ecx is
incremented in order to point to the next source character
(lines 10-11);

• the content of dl is then copied into the memory location
pointed to by edi (namely the current Dest location),
then edi is incremented in order to point to the next
destination location (lines 15-16).

Let us now examine listing 3, corresponding to the loop
body of function bufCopy (described in listing 1). This
function takes two arguments Dest and Src, and uses one
local variable (pointer p), whose addresses in the execution
stack are ebp+Dest, ebp+Src and ebp+p respectively.
Initially p is assigned with Dest, this is not shown in listing 3.
The copy operation between Src and Dest is more complex
than in the previous example. It can be summarised as follows:

• the address of the current location pointed to by p is
copied into eax (line 8), then moved to ecx (line 9),
eax is incremented and written back to p which now
stores the address of the next destination location (lines
10-11);

• the same scenario occurs for buffer Src: the address of
the current source character is copied into edx (lines 12-
13), and the address the next source character is assigned
to Src (lines 14-15);

• finally, the current source character (stored in edx) is
written to the current destination location (lines 16-17);

• lines 3-6 evaluates the loop condition, to exit if the current
source character is equal to 0.

Recall that BOIL detection means identifying loops con-
taining at least memory writes, at changing addresses, and
depending on local variables and arguments, the comparison
between these two codes raises several remarks:

• In listing 3, the dependencies among memory location
read or write inside the loop and the local variables and
arguments are directly visible inside the loop body. It is
not the case for listing 2.

• In listing 2, within the loop, the memory is written only
once (at line 15). In listing 3, within the loop, memory



is written 3 times - two times for changing the stored
address of the next character (at lines 11 and 15) and
one time for storing the character itself (at line 17).

• As a consequence, in listing 3, the memory address
change is also done via a memory write. In other words,
memory write operation is involved in the process of
changing the address of the memory that is being written
within the loop. Whereas, in the case of listing 2, memory
address change is a matter of incrementing the register
that contains the address of the memory that is being
written.

We find these two compilation patterns stable across few
tested compilers (MS C/C++, GCC, etc) and in the following
we will call them pattern A (listing 2) and pattern B (listing
3).

B. Formalisation of the Solution

We now try to formalise more the common features of
the code patterns discussed in the previous section. The main
objective here is to provide some simple (but general) criteria
to be used for BOIL detection.

First, the so-called stride memory access mode gives rise to
a general pattern inside the loop body of the following style:

MEMcur = MEMpre + stride (1)

where, MEMcur is the current memory location and
MEMpre is the previous memory location, and stride is a
constant which may depend on the type of the buffer elements.

To interpret equation 1 at the assembly level, the following
facts have to be taken into consideration:

• Memory write operations and address computations are
distinct instructions, i.e., equation 1 is written as
adr = adr + stride
MEM[adr] = ...

• Since we focus on stack-based buffer overflow detection
we assume that address adr is either contained in a
register, or it results from some combination of the base
register ebp and some offset.

As already mentioned, a loop will be classified as BOIL if its
body contains a memory write to a changing address adr.
Thus, a necessary condition is that the value written into adr
within the loop body depends on adr itself (like in adr
= adr + stride), or, at least, on another changing value
inside the loop body. This can be expressed in terms of (self)-
dependency chains computed from adr, as explained below.

A use-definition chain [11] (or UD chain) of a given
instruction s is a set of instructions defining a variable used
in s. We slightly generalise this definition to the notion of
backward dependency chain: a backward dependency chain
for a variable v used in an instruction s is a sequence of
variables that have been successively defined (on a given
execution) to define v. To formalise this notion, we introduce
some definitions based on the (classical) notion of dependency
chain. We will adopt the following notations:

• I = [s1, s2, . . . sn] is an execution sequence (where each
sp is an instruction);

• K = [sk1 , sk2 , . . . skm ] is called a sub-sequence of I if it
contains some of the instructions of I taken in this order,
namely (i) ∀k ∈ [1,m]. ski ∈ I and (ii) ki < ki+1;

• v denotes an arbitrary memory location (that could be
either a register r, or a memory address of the form [r]
or [r+offset]).

• For a given instruction s, Def (s) (resp. Use (s)) desig-
nates the set of variables defined (resp. used) by s (e.g.,
the lhs and rhs of an assignment).
a) Backward Dependency Chain: A backward depen-

dency chain from v over I is a sequence of memory locations
v1, v2, . . . , vm = v such that sk1 , sk2 , . . . , skm is the longest
sub-sequence of I verifying:

• skm = sn
• vi ∈ Def (ski

)
• Def (ski) ∩ Use (ski+1) ̸= ∅
• ∀j ∈]ki, ki+1].Def (sj) ∩ Use (ski+1) = ∅
We can now introduce the notion of self-dependency chain

as a special backward dependency chain:
b) Self-Dependency Chain: A self-dependency chain

over I is a backward dependency chain v1, v2, . . . vm s.t.
vm = vi for some i ∈ (1, 2, · · · ,m− 1).

In order to visualise the above definitions, we can distin-
guish two cases of self-dependency chain:

1) when vi = v1 (Fig. 1(i))
2) when vi = vj , j ∈ (2, 3, · · · , i− 1) (Fig. 1(ii))

v1

v2

v3
v4

v5

v1

v2

v3

v4

v5

v6

(i) (ii)

Fig. 1. Self-dependency chain graph shape.

Intuitively, the notion of self-dependency captures the fact
that a variable v (or register/memory location) changes within
the loop because its current value is obtained by something
which is based on its previous value.

The shape of the dependency chain for memory location
edi inside pattern A corresponds to Fig. 1(i). This is
illustrated by the following excerpt of an execution sequence
produced by listing 2 (where the loop is executed twice):
1: MEM[edi] ← SRC 2: edi ← edi+1
3: MEM[edi] ← SRC

However, for the case of pattern B, the change in the
memory address written inside the loop does not appear as
a (simple) self-dependency chain, as illustrated by the code
fragment below (corresponding to an excerpt of listing 3):
1: reg ← MEM[base+offset]



2: reg1 ← reg
3: reg ← reg+stride
4: MEM[base+offset] ← reg
5: MEM[reg1] ← SRC
Indeed, in this example, base+offset does not change,
but its content depends on reg, which changes inside the
loop (line 3). So, here the “self-dependency” is not visi-
ble explicitly. In the figure 2, we can see that there is a

MEM[reg1]

5

reg1

2

reg

1

MEM[ebp+offset]

MEM[ebp+offset]

reg

4

3

Fig. 2. Dependency chain for pattern B.

dependency chain starting at MEM[reg1] and ending at
Mem[ebp+offset], and that there is a self-dependency
chain starting at MEM[ebp+offset]. This situation can be
captured by extending our previous notion of dependency
chain as follows:

c) Extended Self-Dependency Chain: There exists an
extended self-dependency chain from a memory location v
over an execution sequence I if there exists a non-empty set
of dependency chains C1 = [v11 , . . . v

1
n1
], C2 = [v21 , . . . v

2
n2
],

. . .Cp = [vp1 , . . . v
p
np
] such that:

• ∀i ∈ [1, p− 1]. vini
= vi+1

1 ;
• vpnp

= v ;
• C1 is a self-dependency chain.
Figure 3 shows an example of extended self-dependency

chain corresponding to pattern B.

v1

v2

v3

vi

vi

ui

Fig. 3. Extended Self-Dependency chain.

Using the previous definitions, we can now state more
formally the criterion we propose to use for BOIL detection.

d) Iteration dependent value: The value of a memory
location v used in a loop depends on the number of iteration
performed if there exists an execution sequence of the loop
body L which contains an extended self-dependency chain
starting from v.

The proof of this claim is obtained by contradiction: if
there is no extended self-dependency chain starting from v,
this means that, for all possible execution sequence of L∗, v
depends only on initial values defined outside the loop. As a
consequence, the value of v does not depend on the number
of iteration performed.

e) A BOIL detection criterion: A loop is classified as
BOIL if it contains a write to an address which is iteration
dependent (as defined below).

Of course, since this (static) criteria provides only a
necessary condition we may get false positives, as illustrated
in the following loop body:
1: adr = adr + 0 2: MEM[adr] = ...

Note that since we only deal with a special case of buffer
overflows (corresponding to particular array accesses) we may
get some false negatives as well. However, we will see in
section V that this criterion happens to be accurate enough in
many realistic examples.

III. IMPLEMENTATION DETAILS

In this section we discuss some implementation issues of
BOIL detection based on the criterion stated above. First we
present the framework we used to develop this solution, and
how it impacts our work. Then we describe in more details
the algorithmic part of our implementation.

A. The BinNavi framework

Our implementation is based on BinNavi [12], a reverse-
engineering framework. BinNavi is based on the preliminary
analysis done by the IDA Pro disassembler [13]. Starting
from the assembly code produced by IDA Pro from binary
executables, BinNavi provides several intermediate program
representations based on an meta-assembly intermediate lan-
guage called REIL. These intermediate representations (call
graph, control-flow graph, etc.) can be accessed through Jython
APIs to write static analysis modules.

From a prototyping point of view, one of the most inter-
esting feature of BinNavi is the REIL intermediate language.
This language is defined from 17 instructions only, with an
uniform syntax, following a 3-address instruction format -
inst op1, op2, op3 - where inst is the opcode of the
instruction, op1 and op2 are the operands, and op3 is the
resultant. Operands are either registers or immediate values,
and the result is always a register.

The underlying CPU architecture is very simple as well
(unlimited memory and unlimited number of registers). Of
course, translation from the assembly source code is not one-
to-one, but there is a correspondence between the offsets
of native instructions and the offsets of REIL instructions.
In addition, native register names (like ebp, edi, etc.) are
preserved in the REIL code.

Translation to REIL is available from several codes (x86,
ARM, PowerPC, and MIPS). Our experiments are based on
x86 executables.



40101 F00 add 0xFFFFFFFC , ebp , qword t 0 / / 0040101F
mov eax , s s : [ ebp + var 4 ]

40101 F01 and qword t0 , 0xFFFFFFFF , t 1
40101 F02 ldm t1 , , t 2
40101 F03 s t r t2 , , eax
40102200 s t r eax , , ecx / / 00401022

mov ecx , eax
40102400 and 0x1 , 0 x80000000 , t 0 / / 00401024

add eax , 1 ## ∗p++
40102401 and eax , 0 x80000000 , t 1
40102402 add 0x1 , eax , qword t 2
40102403 and qword t2 , qword 0 x80000000 , t 3
40102404 bsh t3 , −31, byte SF
40102405 xor t0 , t1 , t 4
40102406 xor t4 , 0 x80000000 , t 5
40102407 xor t0 , t3 , t 6
40102408 and t5 , t6 , t 7
40102409 bsh t7 , −31, OF
4010240A and qword t2 , qword 0x0 , qword t 8
4010240B bsh qword t8 , qword −32, byte CF
4010240C and qword t2 , qword 0xFFFFFFFF , t 9
4010240D b i s z t9 , , byte ZF
4010240E s t r t9 , , eax
40102700 add 0xFFFFFFFC , ebp , qword t 0 / / 00401027 mov

s s : [ ebp + var 4 ] , eax ## ∗p++
40102701 and qword t0 , 0xFFFFFFFF , t 1
40102702 stm eax , , t 1
40102A00 add 0xC , ebp , qword t 0 / / 0040102A mov

eax , s s : [ ebp + arg 4 ]
40102A01 and qword t0 , 0xFFFFFFFF , t 1
40102A02 ldm t1 , , t 2
40102A03 s t r t2 , , eax
40102D00 s t r eax , , edx / / 0040102D mov

edx , eax
40102 F00 and 0x1 , 0 x80000000 , t 0 / / 0040102F add

eax , 1 ## ∗ s o u r c e ++
40102 F01 and eax , 0 x80000000 , t 1
40102 F02 add 0x1 , eax , qword t 2
40102 F03 and qword t2 , qword 0 x80000000 , t 3
40102 F04 bsh t3 , −31, byte SF
40102 F05 xor t0 , t1 , t 4
40102 F06 xor t4 , 0 x80000000 , t 5
40102 F07 xor t0 , t3 , t 6
40102 F08 and t5 , t6 , t 7
40102 F09 bsh t7 , −31, OF
40102F0A and qword t2 , qword 0x0 , qword t 8
40102F0B bsh qword t8 , qword −32, byte CF
40102F0C and qword t2 , qword 0xFFFFFFFF , t 9
40102F0D b i s z t9 , , byte ZF
40102F0E s t r t9 , , eax
40103200 add 0xC , ebp , qword t 0 / / 00401032 mov

s s : [ ebp + arg 4 ] , eax ## ∗ s o u r c e ++
40103201 and qword t0 , 0xFFFFFFFF , t 1
40103202 stm eax , , t 1
40103500 ldm edx , , byte t 0 / / 00401035 movsx

eax , byte ds : [ edx ]
40103501 xor byte t0 , byte 0x80 , byte t 1
40103502 sub byte t1 , byte 0x80 , t 2
40103503 and t2 , byte 0xFFFFFFFF , byte t 3
40103504 s t r t3 , , eax
40103800 and eax , byte 0xFF , byte t 1 / / 00401038 mov

byte ds : [ ecx ] , byte a l
40103801 stm byte t1 , , ecx
40103A00 j c c byte 0x1 , , 0 x401010 / / 0040103A jmp

loc 401010

Listing 4. Part of the REIL code obtained from listing 3

B. Developing the solution in REIL

When considering the REIL intermediate language, the
BOIL detection technique we proposed in the previous section
can be slightly refined. To illustrate this for pattern B, let us
consider the REIL code, given in listing 4, which is produced
from the x86 source of listing 1.

Once a loop has been detected in the code, the first step is to
identify memory write instructions within its body. Although

not so obvious at the x86 level (due to the syntax complexity),
this task happens to be much simpler in REIL. Indeed, there
are only two memory access instructions: STM (for “store
memory”) and LDM (for “load memory”). For our purpose,
STM is the instruction that serves well. Its format is stm
src,,dest, where src is a literal or register whose value
is stored at the memory address contained in register dest. In
listing 4, there are 3 STM instructions, at addresses 40102702,
40103202 and 40103801.

The second issue is now to check for the existence
of extended dependency chains starting from the store ad-
dresses used by these STM statements. This address is
contained in their third operand. For the instructions at
40102702 and 40103801, these dest registers (registers t1
and ecx resp.) are both dependent on memory address ebp +
0xFFFFFFFC, at instructions 40102700 and 40101F0 resp.
Further, if we trace back the src of the instruction at
40102702 (register eax), we find that it depends on itself, with
the corresponding self-dependency chain being given below:
40102702 stm eax , , t 1
4010240E s t r t9 , , eax
4010240C and qword t2 , qword 0xFFFFFFFF , t 9
40102402 add 0x1 , eax , qword t 2

Listing 5. Backward dependency chain of the src of a STM instruction

According to our criterion we can conclude that the content
of the destination register of the STM instruction used at
address 4010381 is changing at each iteration. Hence, this
loop is classified as a BOIL. We detail below the algorithms
we used to implement these steps.

C. Finding Loops

Loop detection is performed using the standard algorithm,
given in [11]. This algorithm starts with calculating dominator
tree of function’s instruction graph and is based on the
observation that any child of a node which also happens to
be it’s dominator, indicates the presence of a loop. BinNavi
provides a direct API to calculate dominator tree. For each
loop, we extract the control-flow graph of the loop body.

Thereafter, we analyse each loop separately, looking for
STM statements. If the loop does not have any STM, it is
clearly classified as “not interesting”. Otherwise, we need to
check more carefully if this loop is a BOIL.

D. Identifying BOILs

The BOILs detection algorithm takes a loop as input and it
returns true if and only if this loop is a BOIL.

As discussed in section II-B, this algorithm is based on
backward dependency chain computations, distinguishing two
different situations:

• self-dependency chains: an element of the chain depends
on itself;

• extended self-dependency chains: the chain terminates
either outside the loop body, or it reaches a variable
starting a new (extended) self-dependency chain.

From the implementation point of view, this check is per-
formed by starting a (backward) def-use chain computation



from all instructions of the loop until one of the following
conditions holds:

1) we reach an instruction involving an operand already
present in the current chain ⇒ this chain is a self-
dependency chain, this loop is a BOIL;

2) we reach an instruction involving ebp or esp ⇒ this
chain may be an extended self-dependency chain, a new
computation will start again from this operand;

3) we reach an instruction not included in the loop ⇒ this
loop is not a BOIL.

This implementation uses the BinNavi API, allowing to
access the control-flow graph of each function and to easily
compute def-use chains.

IV. EXTENDING BOIL DEFINITION

As mentioned earlier, our current definition of BOIL does
not consider all the required features to trigger a buffer
overflow vulnerability. One of them is to ensure that the
loop iteration condition is dependent on source buffer. In this
section, we propose a simple, yet effective, mechanism to
include this extra check. This makes the definition of BOILs
a bit stronger (i.e. less conservative).

Of course, we still want to limit ourselves to scalable static
analysis techniques, and therefore the solution we propose here
is not general. More precisely, we consider the case where
the loop iteration is controlled by a specific variable, i.e.,
the induction variable is different than the variables related
to source or destination buffers. This can be a local variable
or one of the arguments passed to the function.

Thus, our underlying assumption is that the loop control-
ling variable is referred in the program as ebp + offset,
where the offset should be different from that for source or
destination buffer w.r.t. ebp. Following simple steps describe
the extra check:

1) Find in the loop body a conditional branch instruction.
In the case of REIL, the corresponding instruction is
JCC, those syntax is jcc reg1, ,reg2 where reg1
is set according to a CMP instruction to decide if the
jump is taken. Register reg2 is the target address of
the jump.

2) Check if reg2 is an address outside of the loop. This
is the condition to find loop controlling variable. We
assume that the loop is a standard loop [14]2.

3) Perform a backward dependency chain on reg1, which
may go beyond loop body instructions to reach an
instruction which has ebp as operand.

4) For patterns A and B of main BOIL detection algorithm,
find the backward dependency chain for the source of
corresponding STM instruction(which is already calcu-
lated for pattern B as described in section III-D). We
calculate it for pattern A following the same approach.

5) This backward dependency chain stops at ebp +
offset type instruction. If the offset is same for

2If there are multiple loop exits, we consider only the first one. In such
case, we may produce a false positive as the corresponding cmp/jcc may
not be loop terminating factor.

step 3 and step 4 dependency chain results, classify the
loop as BOIL.

As can be seen from the above formulation, this check
makes the BOILs more specific. It should also be clear from
this formulation that if a BOIL involves a vulnerability which
depends on the destination buffer, such a negative array index
access in destination buffer (freeType vulnerability, explained
in section V-A) , it will be missed (meaning that there are still
false negatives). We will see in section V how this extension
impacts our experimental results.

V. EXPERIMENTAL RESULTS

Our work objective is to find so-called BOP functions,
which are able to trigger some buffer overflow vulnerabilities
at runtime. To do so, we proposed some lightweight static
checks, that can be applied at the binary level. To properly
evaluate this work we need to address the following points:

1) The proposed approach should detect functions contain-
ing well-known buffer overflow vulnerabilities, like the
ones of strcpy family (memcpy, wcscpy, etc.).

2) It should also detect less straightforward (but still rel-
evant) dangerous functions, for instance functions that
have been reported to have (BoF like) vulnerabilities
in the past, e.g., those from CVE databases as such.
Actually, this is one of our main points: by detecting
some known vulnerabilities, we want to convey that
our solution will be able to detect unknown vulnerable
functions as well in the future.

3) It should not classify all functions as vulnerable (i.e.,
the number of false positive should remain weak);

4) Execution cost should remain low enough to allow its
execution on real-world (large sized) examples.

We first explain how we chose some experimental dataset
to evaluate these four points, followed by the results obtained
in terms of execution time and vulnerability detection.

It should, however, be noted at this point that our cur-
rent implementation does not include the taint analysis and
therefore, these results do not consider the presence of tainted
paths to such functions while classify them as vulnerable i.e.
we cannot say if an attacker can influence their execution.
Another thing to be noted is that many of such functions copy
string in a secure manner (strncpy or newer string functions
of gdi32.dll), but we still detect them as vulnerable mainly
because our current implementation does not consider the
dependence between loop termination condition and buffer’s
length. Such considerations constitute our future work.

A. Experimental Dataset

In principle, the BOIL criterion we proposed can be com-
puted on any x86 executable file, with or without symbol
information However, one of the important issues we want
to evaluate is the ability of our BOIL criterion to retrieve
known vulnerability (since we think it is a first condition to
find unknown vulnerabilities in the future). To do so, we need
to retrieve the name of the functions classified as vulnerable by
our BOIL detection technique. This is the only way to check if



they correspond to known vulnerable functions. However, most
of the time, function names are not present in the binaries,
especially COTS softwares that we plan to experiment with.
Therefore, it is not possible to establish that we recognise,
for example, strcpy function because all we will get is an
address. As a consequence we need to find a way to have
function names in the executable of the application.

For C/C++ library functions (like the ones of the strcpy
family), this problem is partially solved by the use of IDA Pro
since it can recognise such functions thanks to the so-called
FLIRT signatures. Moreover, Microsoft libraries are usually
shipped with symbol files (using the .pdb format). Thus, if
an application binary is compiled statically to use such library
functions, IDA pro will recognise them. For this reason we in-
cluded Microsoft libraries like msvcr80.dll, ntdll.dll,
kernel32.dll or gdi32.dll in our experiment database.

However, we also need to identify known vulnerable func-
tions that are not known library functions. This means that
the corresponding binary executable should contain the sym-
bol table and it should be compiled with some debugging
information. Unfortunately, this is not the case for most
real-life applications. As a consequence, in order to get a
usable dataset, we turned ourselves to resources like CVE
Mitre [15] and OSVDB [16] to find applications those source
code is available and could be compiled with debugging flags
on. Following is the list of applications that we choose for
experimentation along with the description of the vulnerability.

• freeType CVE ID: 2010-2806; Vulnerability: Array
index error in FreeType before 2.4.2; vulnerable function:
t42 parse sfnts() in type42/t42parse.c file.

• OpenSSL CVE ID: 2007-5135; Vulnerability: off-by-one
buffer overflow in OpenSSL 0.9.7l and 0.9.8d; Vulnerable
Function: SSL get shared ciphers().

• mpg123 CVE ID: CAN-2004-0805; Vulnerability: Mul-
tiple buffer overflow vulnerabilities in mpg123-0.59r;
Vulnerable Function: II step one(), II step two() in
layer2.c.

• ImageMagick CVE ID: 2007-4987, 2007-4988; Vul-
nerability: Off-by-one error and heap-based buffer over-
flow in ImageMagick before 6.3.5-9; Vulnerable Func-
tion: ReadBlobString() function in blob.c and Read-
DIBImage() function dib.c file.

• TinTin++ CVE ID: 2008-0671; Vulnerability: Stack-
based buffer overflow in TinTin++ 1.97.9 and WinTin++
1.97.9; Vulnerable Function: add line buffer() in buffer.c
file.

B. Experimental Results

Based on the criteria mentioned in the previous section,
we choose the above mentioned open-source applications, and
compile them using GCC and Microsoft CL compiler, as is
applicable. We believe that these two compilers represent a
majority of C/C++ executables that are commonly used. The
experiments are executed on a Windows 2003 server machine,
with Intel 2 GHz CPU and 4 GB of RAM.

The table I provides details of the experimental results
obtained with two versions of our BOIL detection criterion:
the more conservative one, described in section II and called
hereafter BOIL1, and the extension described in section IV,
called BOIL2. Table I gathers the following information:

• the full name of the each module we analyze;
• the total number of functions this module contains;
• the total numbers of loops (as detected by our loop

detection algorithm);
• the total time (in seconds) to compute BOP functions

in the whole module (we have mentioned the time for
BOIL1 only, as the time for BOIL2 is not significantly
different)

• the results produced by each BOIL detection criterion
(BOIL1 and BOIL2), namely:

– the number of BOIL loop detected (and their per-
centage w.r.t the total number of loops);

– the number of BOP functions detected (and their
percentage w.r.t the total number of functions);

– the vulnerability detected: a (Y) in this column
indicates that a (known) vulnerable function has been
detected in this application (together with its name),
whereas a (N) indicates that it has been missed by
our analysis.

As can be seen in the table I, all known vulnerabilities are
retrieved by the BOIL1 analysis (including the known strcpy
like functions), while keeping a low rate of false positives (the
percentage of BOP functions remains most of the time below
10%). As expected, BOIL2 reduces even more the number of
BOP functions detected, without missing real vulnerabilities
in most cases. A notable exception occurs for the freeType
application, where BOIL2 could not identify the vulnerable
function t42_parse_sfnts(). This is because in the loop
responsible for the buffer overflow, the number of iteration
depends on the destination buffer and, as a result, a false
negative is produced by BOIL2.

VI. RELATED WORK

The objective of this paper is to provide a lightweight static
analysis technique for vulnerable pattern detection in binary
code. However, numerous tools have already been developed
for software vulnerability detection. First, we discuss how our
work falls in this context, and then we compare it with other
static analysis techniques proposed for binary code. Finally,
we mention other related work regarding vulnerability pattern
detection.

A. Vulnerability detection
Automated vulnerability detection is an important issue in

computer security, and numerous research papers and tools
have been produced on this topic. Most of the techniques
proposed so far can be gathered behind the concept of “smart
fuzzing”, which consists in detecting potential vulnerabilities
at runtime, by executing the target application on well-chosen
inputs. Two main research projects illustrate this approach, but
many other tools are built on similar ideas like [17]:



TABLE I
LIST OF THE PROGRAMS USED AND CORRESPONDING RESULTS

Module Total func Total loops Total Time BOIL1 BOIL2
BOILs #BOP

func
BOP func names BOILs #BOP

func
BOP func names

msvcr80.dll 2321 1154 1311.01 188 (16) 113 (4) * s versions of strcpy and
wcscpy family

153 (13) 103 (4) * s versions of strcpy and
wcscpy family

GDI32.dll 1775 655 633.81 70 (10) 51 (2) StringCchCopyA,
StringCchCopyNW,
...

39 (5) 33 (1) StringCchCopyA,
StringCchCopyNW,
...

freeType 1910 2568 1948.80 409 (15) 249 (13) (Y) t42 parse sfnts(), ... 71 (2) 59 (3) (N) ...
OpenSSL/
ssleay32.dll

901 112 181.24 45 (40) 30 (3) (Y)
SSL get shared ciphers(),
...

13 (11) 12 (1) (Y)
SSL get shared ciphers(),
...

mpg123/ layer2.o 11 23 39.24 7 (30) 2 (18) (Y) II step one(),
II step two()

7 (30) 2 (8) (Y) II step one(),
II step two()

ImageMagick/
blob.o

136 15 14.96 1 (6) 1 (< 1) (Y) ReadBlobString() 1 (6) 1 (< 1) (Y) ReadBlobString()

ImageMagick/
dib.o

41 35 204.81 15 (42) 2 (4) (Y) ReadDIBImage(), ... 14 (42) 2 (4) (Y) ReadDIBImage(), ...

TinTin++/
buffer.o

48 22 15.11 6 (27) 4 (8) (Y) add line buffer(), ... 6 (27) 4 (8) (Y) add line buffer(), ...

FreeFloat FTP 309 146 54.79 21 (14) 12 (3) (Y) strcpy, wcscpy re-
sponsible for BoF. OS-
VDB ID: 6962121

18 (12) 10 (3) (Y) strcpy, wcscpy re-
sponsible for BoF. OS-
VDB ID: 69621

• Bitblaze [4], is a platform which integrates three main
components: a static analysis component, and provid-
ing several general-purpose analysis (value-set analysis,
weakest precondition, slicing); a dynamic taint-analysis
component; and a dynamic symbolic execution engine.

• Sage [5], is routinely used in Microsoft to find software
vulnerabilities in Windows applications. Like Bitblaze,
It is also based on dynamic symbolic execution and it
implements an efficient search space algorithm whose
objective is to maximise code coverage.

Although implementing very efficient program instrumenta-
tion and path exploration techniques, these two platforms are
based on rather simple vulnerability definitions. Vulnerability
detection in Bitblaze is guided either by differences between
patched and un-patched versions of a given application [18],
or by calls to specific dangerous library functions [19]. Sage
is essentially a (general-purpose) bug detection tool, able to
detect any memory access violation or unexpected memory
consumption.

The work we present in this paper is supposed to be used
as the first stage of a complete vulnerability detection tool
chain, by identifying dangerous code patterns, before running
any (costly) path exploration technique. As such, it cannot be
directly compared with general vulnerability detection tools.
However, we believe that it could help to greatly improve
the efficiency of such tools, by guiding the search towards
the parts of the code that are more likely to contain potential
vulnerabilities.

B. Binary level static analysis

Performing static analysis on binary code is challenging
due to the lack of information usually available at the source
level (e.g, type annotations). Such analysis has been first
proposed either for alias detection [20], or approximated value
computation [9]. More recently, specific analysis have been
developed for security purposes, like taint analysis [21], or
string analysis [22].

The analysis we use in our work is simpler, but cheaper,
than the ones mentioned above. In fact, our initial purpose was
to provide a simple criterion, going beyond a purely syntactic
check, but still computable on large pieces of code, to be used
as a preliminary filter for identifying dangerous functions. That
is why this criterion relies only on a combination between
loop detection and dependency analysis, defined at the intra-
procedural level.

However, it is clear that this criterion could be made more
precise (i.e., avoiding more false positives) by adding, for
instance, inter-procedural taint propagation, or (some limited)
value analysis. More experiments are required to evaluate the
potential benefits (in terms of false positive reduction) of such
extensions with respect to the cost overhead.

C. Vulnerability pattern detection

To the best of our knowledge, there are not so many works
dedicated to vulnerable function computations by mean of
static binary analysis. We briefly present below some of them
that could influence our future work.

The work by Li and Shieh [23] has a non-empty intersection
with our approach. However, there are significant differences.
Their tool, RELEASE, is a concolic execution based technique
for generating inputs, whereas our approach is based on a pure
static analysis technique.

The work by Ketterlin and Clauss proposes a method of
reducing instrumentation sites in binary tracing by introducing
the idea of program skeletonization [24]. This is quite a
different objective. However, we could see some overlapping
with our work, i.e., induction variable resolution. In our frame-
work, rather than detecting induction variable, we address the
loop iteration dependency indirectly by searching for the code
construct corresponding to loop termination condition. In [24],
this check is formalised on an SSA intermediate representation
to explicitly identify induction variable.

Dispatcher (Caballero et. al. [25]) is a protocol format
reverse engineering framework. As an intermediate step, the



method makes use of dependency chains which is similar to
our method except that the dependency chain tracks memory
writes backward. In our case, we do not track the values of the
memory but the registers only. Another significant difference
is that the analysis is done on the execution trace of the
application, i.e., it is a dynamic analysis approach.

VII. CONCLUSIONS AND FUTURE WORK

Developing automated vulnerability detection techniques,
operating at the binary level, and able to address real-word
applications is an important and difficult challenge. One of
the pre-requisite for such methods is to identify some relevant
vulnerability patterns, allowing to restrict the huge search
space, and to concentrate the efforts on the most critical
parts of the code. Regarding buffer overflows on the execu-
tion stack, which is still a commonly exploited vulnerability,
many detection techniques focus on the use of some library
functions known to be unsafe. The purpose of this paper is
to show that with a small time overhead, lightweight static
analysis techniques are able to easily detect similar functions,
based on simple behavioural patterns, and presenting the same
weaknesses as those by library functions from security point
of view.

To do so, we propose a detection method based on the
computation of self-dependency chains inside loop bodies,
leading to the notion of BOILs and BOP functions. After
defining BOILs from vulnerability standpoint, we discuss al-
gorithm to detect such loops in executables of the application.
We also discuss its implementation. Experimental results are
quite encouraging. The present implementation is able to
analyse real-world applications. On the data set we used, we
showed that vulnerability search could focus on only 10% to
20% of total functions present in the application, while still
detecting vulnerable functions. These results also indicate that
our proposed method does not make high false positives.

As a future work, we intend to enhance the definition of
BOILs by adding other criteria. A very important one is the
computation of the taint information flow, to identify BOILs
where the source contents are controlled by the user (which
makes this iteration highly critical), which should further
reduce the number of BOP functions. Other issue would be to
deal with more complex loop patterns (memory writes across
nested loops, or across several procedures), but we would still
need to keep a trade-off between the accuracy of the analysis
and the computational cost (since we only want here to identify
potential vulnerabilities as a preliminary step, to be completed
by other run-time techniques).

Finally, an important perspective is to look for similar
“semantic-based patterns” associated to other kinds of insecure
programming flaws, like badly controlled uses of the dynami-
cally allocated memory (e.g., heap overflows, or use-after-free,
etc.). Detecting statically such patterns would improve current
vulnerability detection techniques.
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