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Abstract

Air quality monitoring and analysis of a given location can be challenging without being able to
determine the factors influencing its behavior. Stationary air pollution monitoring systems mostly ac-
count for temporal variations in few locations due to the traditional choice of sparse deployment. In
addition, the data from these monitoring stations may not be easily accessible. Internet of things (IoT)
has allowed deployment of cost-efficient networks of smart devices with an ease in connectivity to the
internet enabling easier air pollution monitoring.

This thesis mainly proposes two test cases that highlight prominent factors that deeply influence the
pollution pattern in a location. In the first test case, a temporal variation analysis is performed on two
networks of pollution monitoring systems to understand the effects of implementing a nationwide lock-
down during the COVID-19 pandemic. The first network comprises of the costly and bulky air quality
monitoring stations of Central Pollution Control Board (CPCB) sparsely deployed in Hyderabad city
and the second network comprises of the smaller and low-cost IoT nodes densely deployed inside the
IIIT-H campus. Differential analyses were conducted on the data to understand the effects of lockdown
on Particulate Matter (PM) levels by factoring in the yearly and seasonal trends, followed by Welch’s t-
test to check whether the PM values have changed w.r.t. values in pre-lockdown period. Lastly, Pearson
pair-wise correlation coefficient is estimated between PM and temperature values to show the effect of
temperature changes on the PM values irrespective of lockdown. This test case established the effects
of human-centric factors such as vehicular and industrial emissions, commercial activities and commo-
tion on ambient PM variations as a sudden drop in the anthropogenic activities during the nationwide
lockdown has caused a decline in PM levels.

In the second test case, a novel methodology to analyze a moving object database is proposed by
performing a case study on mobile IoT data collecting Particulate Matter across a road stretch of India,
and look into the neighboring spatial and anthropogenic factors such as human activities, settlement
patterns and vegetation profile corresponding to each geo-location of the PM data. The thematic inter-
actions of spatial and anthropogenic factors of each location with the corresponding ambient PM levels
resulted in a factor-based data structure that highlights the PM distribution mapped to each factor. This
case study not only enabled to showcase the influence of spatial and anthropogenic factors of a location
in influencing its ambient PM levels, but also provided a use case for handling mobile object databases,
a challenging issue prevalent amidst the GIS community. Both the test cases effectively demonstrated
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the contribution of different surrounding factors in affecting the PM values, thus providing a gateway
for accurately modeling the ambient air quality data based on key parameters.
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Chapter 1

Introduction

1.1 Motivation

Over the past few years, the ease in complex computation and high speed internet connectivity has
resulted in the emergence of an innovative technology known as the Internet of Things (IoT) (cite). In a
nutshell, IoT is the concept of connecting any thing to the Internet and to other connected devices. The
IoT is a giant network of connected things and people – all of which collect and share data about the way
they are used and about the environment around them. That includes an extraordinary number of objects
of all shapes and sizes – from smart home systems, which monitor and/or control home attributes such
as lighting, temperature, entertainment systems and appliances, to self-driving cars, whose complex
sensors detect objects in their path, to wearable fitness devices that measure your heart rate and the
number of steps you’ve taken that day, then use that information to suggest exercise plans tailored to
you. There are even connected footballs that can track how far and fast they are thrown and record those
statistics via an app for future training purposes [1].

Air pollution has been a cause of severe concern since ages due to its hazardous effects on human
health and the environment. It has been a burning agenda amongst global climate change advocates.
There are several air pollutants in the atmosphere, out of which Particulate Matter (PM) has been iden-
tified as the most crucial contributor to air pollution [2, 3]. Long term exposure to PM may increase the
chances of severe respiratory and cardiovascular illness. Considering the diverse range of IoT applica-
tions, one it is extremely pertinent to incorporate novel IoT-based air pollution monitoring and analysis
techniques. Numerous research have been conducted in the past to accurately monitor and evaluate the
impact of air pollution using IoT-based solutions [4, 5, 6]. Most studies emphasize on temporal varia-
tion of pollutants to understand ambient air quality. As the temporal variation analysis is performed on
regular day-to-day air pollutant concentration, these studies exclusively account for the influence of me-
teorological factors, but fail to account for any direct correlation of any anthropogenic or spatial factor
over the pollutant levels. This thesis is designed to address and evaluate the influence of anthropogenic
and spatial factors on pollutant (in this case, PM) concentration levels by cumulatively presenting two
sets of experimental analysis carried out on low-cost IoT nodes. In the first experiment, the temporal
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variation of PM is studied to evaluate the effects of the nationwide COVID-19 lockdown that caused
a sudden drop in human activities, thus determining a correlation between PM and anthropogenic ac-
tivities. Whereas, in the second experiment, a spatial variation analysis is performed on the PM data
collected over a diverse range of geo-locations across the country. Two networks of stationary IoT nodes
were employed in the first experiment, whereas a mobile IoT node was used in the second experiment
to collect the PM data. Both these experiments not only evaluated the influence of spatial and human-
centric factors in surrounding PM variation, but also promoted the need for a hybrid IoT-based solution
comprising of stationary and mobile IoT nodes for capturing optimum spatio-temporal resolution of PM
variation.

1.2 Summary of Contributions

The main contributions of this thesis are split among two chapters:

• Chapter 3

– In the study presented in this chapter, the focus is on quantifying the change in PM concen-
tration in Hyderabad city due to the implementation of nationwide COVID-19 lockdown.

– Two datasets have been used for this analysis. The first dataset (data for one and half years)
is from CPCB stations in the city [7], while the second dataset (data for six months) is from
the dense IoT network of PM monitors deployed in the educational campus of IIITH in
Gachibowli region of Hyderabad, a bustling IT and financial area [6].

– Differential analyses are done on the data to understand the effect of lockdown on PM values
by factoring in the yearly and seasonal variations.

– The Welch’s t-test is carried out to test whether the PM values have changed with respect to
values in pre-lockdown time period.

– Pearson pair-wise correlation coefficient is estimated between PM and temperature values
to show the effect of temperature changes on the PM values irrespective of lockdown.

• Chapter 4

– This study proposes a novel methodology of analyzing mobile IoT data by performing spa-
tial and anthropogenic factor-based thematic interactions with it to retrieve interesting pat-
terns that account for the data variation.

– Data is collected for a large range of geo-locations across the country that showcases a
diverse spatial variation during a limited time period using a mobile IoT node. The data
primarily comprises of PM concentration and vegetation cover corresponding to said geo-
locations.
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– Few road stretches within different routes were identified in the spatially varying PM profile
where PM levels showed significantly higher values (spikes). The anthropogenic activities
and land use features of these road stretches provided sufficient evidence to further investi-
gate the influence of spatial and anthropogenic factors over ambient PM levels, thus raising
a need for formulating a generic framework that could explain the spatial variation of the
PM data collected over the course of the entire journey of the mobile IoT node.

– A factor-based data structure is proposed comprising the minimum, mean, maximum and
standard deviation of PM values obtained by performing thematic interactions between dif-
ferent spatial and anthropogenic factors corresponding to each geo-location. This type of
factor analysis is performed to understand the influence of spatial and anthropogenic factors
over PM variation.

1.3 Organization of Thesis

The remainder of this thesis is organized as follows:

• Chapter 2 provides an overview of IoT, types of IoT nodes, application of IoT in different areas
and verticals and lastly the use of IoT in monitoring and analysis of air pollution data.

• Chapter 3 gives an analysis of PM variation in Hyderabad city during COVID-19 lockdown.

• Chapter 4 discusses a case study on PM variation across India using spatial factor-based analysis
of data obtained from a mobile IoT node.

• Chapter 5 serves as the conclusion of the thesis.

3



Chapter 2

IoT : A Brief Overview

This chapter gives an overview about an IoT node and its components. It is followed by a brief
description of its two basic classifications: stationary and mobile IoT nodes. Subsequently, application
and use-case of IoT nodes in air pollution monitoring are discussed. Lastly, the major challenges faced
by traditional IoT-based air pollution monitoring are presented. This chapter provides only a brief
introduction, and interested readers can read further details from various interesting books and articles
on IoT like [8, 9, 10, 11, 12]

2.1 Introduction

Figure 2.1: Internet of Things

IoT is about interconnecting embedded systems, bringing together evolving technologies such as
sensors, actuators, high performance computing, wireless connectivity, and cloud storage/internet, as
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seen in Fig.2.1. These connected embedded systems are independent microcontroller-based computers
that use sensors to collect data. These IoT systems (also known as IoT nodes) are networked together
usually by a wireless protocol such as WiFi, Bluetooth, 802.11.4, or a custom communication system.
The networking protocol is selected based on the distribution of nodes and the amount of data to be
collected. This data is sent over the network to the main hub or computer. This main computer collects
and analyzes the data, storing it in memory and even making system decisions based on the results of
the analysis.

To understand what truly defines the expression Internet of Things, one needs to go back in time,
in the year 1999, when the expression was first coined by Kevin Ashton, the British technology pioneer
who co-founded the Auto-ID Center at the Massachusetts Institute of Technology, which created a global
standard system for RFID and other sensors [13]. According to Ashton,

“The Internet of things is about empowering computers...so they can see, hear and smell
the world for themselves”

Few eminent agencies and organizations have given their own definitions of IoT:

• Gartner Research [14] defines it as the network of physical objects that contain embedded technol-
ogy to communicate and sense or interact with their internal states or the external environment.

• United Nations International Telecommunication Union [15] defines it as a global infrastructure
for the information society, enabling advanced services by interconnecting (physical and virtual)
things based on existing and evolving interoperable information and communication technologies.

2.2 Major components

A typical IoT system can be divided majorly into five major components as shown in Fig. 2.2 and
listed as thing/device, gateway, cloud, analytics and user interface [16].

2.2.1 Smart devices and sensors – Device connectivity

Devices and sensors are the components of the device connectivity layer. These smart sensors are
continuously collecting data from the environment and transmit the information to the next layer. Latest
techniques in the semiconductor technology is capable of producing micro smart sensors for various
applications. Some of the common sensors are: temperature sensors and thermostats, pressure sensors,
humidity / moisture sensors, light intensity detectors, proximity detection, RFID tags, etc. Most of the
modern smart devices and sensors can be connected to low power wireless networks like Wi-Fi, ZigBee,
Bluetooth, Z-wave, LoRAWAN etc. Each of these wireless technologies has its own pros and cons in
terms of power, data transfer rate and overall efficiency. Developments in the low power, low cost
wireless transmitting devices are promising in the area of IoT due to its long battery life and efficiency.
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Figure 2.2: IoT Components

[16]

2.2.2 Gateway

IoT gateway manages the bidirectional data traffic between different networks and protocols. An-
other function of gateway is to translate different network protocols and make sure interoperability of
the connected devices and sensors. Gateways can be configured to perform pre-processing of the col-
lected data from thousands of sensors locally before transmitting it to the next stage. IoT gateway offers
certain level of security for the network and transmitted data with higher order encryption techniques.
It acts as a middle layer between devices and cloud to protect the system from malicious attacks and
unauthorized access.

2.2.3 Cloud

IoT creates massive data from devices, applications and users which has to be managed in an efficient
way. IoT cloud offers tools to collect, process, manage and store huge amount of data in real time. In-
dustries and services can easily access these data remotely and make critical decisions when necessary.
Basically, IoT cloud is a sophisticated high performance network of servers optimized to perform high
speed data processing of billions of devices, traffic management and deliver accurate analytics. Dis-
tributed database management systems are one of the most important components of IoT cloud. Cloud
system integrates billions of devices, sensors, gateways, protocols, data storage and provides predictive
analytics. Companies use these analytics data for improvement of products and services, preventive
measures for certain steps and build their new business model accurately.
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2.2.4 Analytics

Analytics is the process of converting analog data from billions of smart devices and sensors into
useful insights which can be interpreted and used for detailed analysis. Smart analytics solutions are
inevitable for IoT system for management and improvement of the entire system. One of the major
advantages of an efficient IoT system is real time smart analytics which helps engineers to find out ir-
regularities in the collected data and act fast to prevent an undesired scenario. Service providers can
prepare for further steps if the information is collected accurately at the right time. Big enterprises
use the massive data collected from IoT devices and utilize the insights for their future business oppor-
tunities. Careful analysis will help organizations to predict trends in the market and plan ahead for a
successful implementation. Information is very significant in any business model and predictive analysis
ensures success in concerned area of business line.

2.2.5 User interface

User interfaces are the visible, tangible part of the IoT system which can be accessible by users.
Designers will have to make sure a well designed user interface for minimum effort for users and en-
courage more interactions. Modern technology offers much interactive design to ease complex tasks
into simple touch panels controls. Multicolor touch panels have replaced hard switches in our house-
hold appliances and the trend is increasing for almost every smart home devices. User interface design
has higher significance in today’s competitive market, it often determines the user whether to choose a
particular device or appliance. Users will be interested to buy new devices or smart gadgets if it is very
user friendly and compatible with common wireless standards.

2.3 IoT applications

There are several applications and use cases where IoT plays a defining role. Some of the applications
and use cases of IoT in a real-world scenario are listed below:

• Smart cities: The issues related to smart cities include air pollution, distribution of water, traffic
congestion, security [17, 18, 19]. Air pollution monitoring has been one of the major applica-
tions of IoT in the past few years. Smart and green buildings are an integral part of smart cities
with building automation and smart HVAC control systems for energy-efficient activities. IoT
networks help improve the quality of service (QoS) and improve the efficiency of the energy
management system. It would also help to ease the control, and proportional power distribution
to the population across the cities. In India, the smart city mission was launched in 2015, where
hundred cities and towns are selected for improving the quality of life. The mission aims to drive
economic growth and improve the quality of life of people by enabling local area development
and harnessing technology, especially technology that leads to smart outcomes, and ensures that
these cities are livable, inclusive, sustainable, and have thriving economies.
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• Connected Industry: The IIoT, being the basis for the Industry 4.0 and Smart Factory, provides
connectivity for smart factories, machines, industrial infrastructure, management systems, and
more to streamline business operations, creating intelligent, self-optimizing industrial equipment
and facilities [20, 21]. A number of issues related to the management of equipment and resources,
the security and safety of people – can be addressed with innovative IoT solutions. The Industrial
IoT represents a fast-growing field of application due to its exceptionally low power capabilities
perfectly suited for the industrial automation world, enabling innovative services for improving
efficiency, reliability, and availability of industrial processes and products.

• Health care: IoT devices are reshaping the way we receive healthcare [22, 23, 24], and are
equipping not just normal people in monitoring and tracking their health in everyday life, but
also companies-sponsors, doctors, and patients with innovative insights and analytics. The data
obtained from the IoT devices help healthcare, pharma, and life science companies to make bet-
ter decisions and gain a competitive advantage. The advancements in IoT and its continuous
coordination with Pharma and the Healthcare Industries will launch the evolution of real-time
monitoring and treatment of diseases. The pandemic of COVID-19 in recent times has acceler-
ated the adoption of IoT in healthcare. In times of physical distancing, IoT has allowed remote
diagnosis as well as treatment of patients. During the ongoing COVID-19 crisis, IoT has played
a pivotal part in properly monitoring patients who are virus-infected through devices and inter-
twined networks.

• Wearables: Wearables such as smartwatches, smart bands, fitbits have started to dominate the
market. These consist of sensors embedded inside them to sense different body parameters, such
as heart rate, activity tracking. The data collected can be processed and used to calculate de-
rived parameters like calories burnt, sleep tracking, heart rate monitoring, etc. [25, 26]. Smart
wearables collect and analyze data, and in some scenarios, make a smart decision and provide a
response to the user and are finding more and more applications in our daily life.

• Autonomous vehicles: The automobile industry has been there for a long time and has always
been evolving ever since [27, 28, 29]. But, the major transformation is happening now from
vehicles being driven by humans to being driven by themselves autonomously. Today’s cars have
already been extensively connected. The automobile industry is on the brink of a revolution
to move to the self-driving automobile industry, and the driving force behind this is the fast-
developing technology, the IoT. It will transform the automobile industry, and at the same time,
the automobile industry will provide a big boost to it. The potential and the prospects of this
technology are astonishing.

• Smart grids: The grid refers to the electric grid, a network of transmission lines, substations,
transformers, and more that deliver electricity from the power plant to your home or business. The
Smart grid represents an unprecedented opportunity to move the energy industry into a new era
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of reliability, availability, and efficiency that will contribute to our economic and environmental
health. Smart grid strives to improve the energy consumption of buildings. IoT networks are
used to improve the quality-of-service and increase the efficiency of the energy management
system for millions of buildings connected over different cities. It also enables ease of control
and proportional power distribution to the population across the cities [30].

2.4 IoT for Air Pollution Monitoring: Discussion and Challenges

2.4.1 Discussion

Air pollution is a global challenge for governments, regulators, city administrators and citizens.
Many governments are investing multi-billion dollar sums in policies and solutions to improve air qual-
ity and they are empowering cities to tackle air pollution locally. In order to implement effective policies
and interventions there is an increasing focus on understanding the levels and causes of air pollution. To-
day, air quality monitoring is performed by large, expensive scientific instruments permanently installed
and professionally maintained, at a relatively small number of fixed locations. For example Hyderabad
has around six monitoring stations [7]. This makes it difficult for citizens to understand the levels of
pollution they experience in their daily lives, as the monitoring data is not available in real time and
is very sparse. Advances in sensors, IoT platforms and mobile communications technologies have led
to the emergence of smaller, portable, low cost, mobile-enabled sensors that can measure and report
air quality in near real time [31, 32]. The IoT connected devices sense the environment several times
a minute and typically deliver a one minute average value to a connected analytical solution, creating
an opportunity for research bodies to offer air pollution monitoring and control services that deliver
dynamic, local information to stakeholders. Big data capabilities, such as analytical and machine learn-
ing, can then be applied to this data and related data sets, such as weather and traffic, to understand the
causes and fluctuations in air pollution [33].

2.4.2 Challenges

Although the emergence of IoT in air quality monitoring and analysis has revolutionized the envi-
ronmental engineering space, but there are still a lot of challenges that are required to be addressed in
order to better utilize IoT-based solutions for garnering deeper insights on PM variation in the ambient
atmosphere. Most of the air pollution research primarily account for temporal variations of pollution
data and attempt to estimate or forecast pollutant concentrations [34, 35], but there is still scarcity in
studies that provide a holistic understanding of pollution behavior. This is because in order to come up
with possible explanations for pollution behavior, it is of utmost importance to determine the factors
that influence ambient pollutant concentration patterns. A thorough understanding of factors affecting
pollution levels can be achieved by exclusively studying temporal and spatial variations of pollutant
concentrations by employing stationary and mobile IoT deployment strategies respectively.
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IoT deployment strategies need to evolve further to incorporate accountability of most, if not all,
factors that have a direct or indirect influence over PM variation. Without having a deeper understanding
of these factors and how important of a role they have in deciding the PM concentration levels of a
location at any given time, it is difficult for any IoT-based air pollution monitoring solution to build a
smart environment. Most of the recent studies focus on implementing ML/DL algorithms in historical
PM data of a given location and estimating future PM values [36, 37, 38, 39]. Although these studies
account for meteorological factors like temperature, humidity, wind speed, wind direction, etc. of the
location, they fail to account for spatial factors like vegetation profile and anthropogenic factors such
as traffic patterns, industrial/commercial activities, settlement patterns, etc. In order to have a holistic
spatio-temporal understanding of PM behavior, it is pertinent to evaluate the contribution of as many
factors affecting PM as possible. Most recent research such as [40] have started working on building
models that account for spatio-temporal variations throughout an entire city. Although [40] has been
successful in implementing novel ConvLSTM model for interpolating and predicting air pollution data
across a city by keeping into consideration few spatial and temporal features of the pollution data such
as traffic volume, average driving speed and meteorological data, it fails to consider the influence of
many other factors. On top of that, considering only city-wide data for proper understanding of PM
behavior would not be diverse enough to highlight conclusive results.

Considering the importance of the different set of capabilities that stationary and mobile IoT nodes
have to offer, it makes sense to incorporate both while formulating a solution for efficient air pollution
monitoring and analysis. Now, in order to implement a hybrid model of air pollution monitoring com-
prising of stationary and mobile IoT nodes, it becomes pertinent to perform separate case studies on
stationary and mobile IoT nodes which could show how both of these nodes have different challenges
and know-hows of data collection and unique methods of data analysis. These exclusive methods of
analysis used by stationary and mobile IoT nodes respectively provide two different vantage points to
understand PM behavior in depth.

2.5 IoT Node Types

IoT nodes can be classified into the following two major types based on their deployment strategies:

2.5.1 Stationary

Stationary IoT node is a type of sensor node which is static in nature, i.e. the sensor node is placed
in a specific location to sense data of that particular location. These kind of nodes are positioned in a
location for a long period of time in order to collect data and monitor the data behavior of that particular
location. After collecting data from location using a stationary IoT node for a significant time period,
temporal variation analysis is usually performed to understand the effects of seasonality on the collected
data. Therefore, stationary IoT nodes are the go-to option for temporal behavior understanding of data
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collected from a given location.One such example of stationary IoT node deployment could be the
IoT network of PM monitors deployed in IIITH [6]. In [6], a dense deployment of IoT enabled low-
cost sensor nodes is done. For this, total nine low-cost IoT nodes monitoring PM are deployed in a
small educational campus in Hyderabad city. A web-based dashboard website is developed to easily
monitor the real-time PM values. Another example of stationary IoT deployment, having relatively
sparse deployment than [6] would be the six pollution monitoring stations of the CPCB, Hyderabad [7].

2.5.2 Mobile

Mobile IoT node is a type of sensor node which, as the name suggests, is mobile in nature, i.e.
the sensor node is in motion due to its positioning on a mobile object (most commonly on terrestrial
vehicles or aerial drones). They move from one location to another to sense data of different locations.
These kind of nodes usually travel across different locations in order to collect different data values of
different locations in a short period of time. Depending on the speed of the mobile object carrying the
IoT node, mobile IoT nodes could cover a lot of locations within a short span of time, thus allowing
to understand spatial variability of data over a diverse range of locations. Mapping of the mobile IoT
data is the most popular and preliminary mode of visualization technique adopted during analysis. One
example of mobile IoT deployment would be [41], where a black carbon (BC) measurement campaign
was conducted along two fixed routes in Antwerp, Belgium using a bicycle equipped with portable
BC monitor. Another good example of mobile IoT deployment would be the roadside case study to
understand the spatial variability of air quality in Sydney, Australia [42]. The measurement campaign
was conducted by mounting the PM monitoring device on top of a pram and collecting data over the
chosen area of Randwick in Sydney, because it was also the subject area for an agent-based traffic model.
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Chapter 3

IoT Network-Based Analysis of Variations in Particulate Matter due to

COVID-19 Lockdown

This chapter discusses the analysis of PM variation across Hyderabad city during the COVID-19
lockdown period. An introduction to the study, followed by a brief overview on the IoT measurement
networks used for collecting the dataset is presented, along with the analysis tools and techniques ap-
plied on the datasets, and lastly the analysis results are presented.

3.1 Introduction

A recent study has shown a correlation between PM (2.5 and 10) and mortality exposure due to the
COVID-19 virus [43]. Localised and frequent monitoring of PM and other air pollutants is required for
focused health advisories and intervention.

Internet of things (IoT) is the most preferred choice for air pollution monitoring due to its ability to
sense and connect with the ambient surroundings and ease of interaction with users and other systems
by employing an array of smart devices [33]. For example, Central Pollution Control Board (CPCB)
has deployed six monitoring stations in Hyderabad measuring different pollution parameters linked to
the Indian air quality index (AQI) including PM2.5, and PM10 [7]. These values are accessible to the
general public through their website or downloaded by an APP through API. Although CPCB monitors
are highly reliable, they are incredibly costly, and only a few can be deployed. For example, a large
metropolitan city like Hyderabad spread across 650 km2 has only six monitoring stations. This sparse
deployment leads to the unavailability of pollution data at places of personal interest to the general
public, such as residential areas, offices, and schools. This issue has paved the way for the low-cost
but dense deployment of IoT networks for air pollution monitoring by researchers and institutions to
understand local pollution. In our study a dense network of eight nodes in a small area of 66 acres
was deployed in IIITH for monitoring PM2.5 and PM10 [6] as a pilot study. This study focuses on the
monitoring of PM2.5 and PM10 parameters.
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Significant contributors to the PM are vehicles, residential and industrial fuel burning, and dust
[44, 2, 45]. After the outbreak of the corona pandemic in February 2020, governments worldwide
have put several restrictions on human activities in public places as a measure to reduce the spread
of the virus. In some countries, complete lockdown had been announced. The Indian Government
announced a complete nationwide lockdown on March 24, 2020, which lasted till May 3, 2020. Due to
the lockdown, the traffic, industrial, and other outdoor activities have dropped to a bare minimum. This
has resulted in a significant drop in air pollution in several regions, including New Delhi, India [46],
USA [47], and Europe [48]. The focus of this paper is on quantifying the effect of COVID-19 on the
change of PM values in the southern Indian city of Hyderabad.

The specific contributions of this chapter are

• Two datasets have been used for this analysis. The first dataset (data for one and half years) is
from CPCB stations in the city [7], while the second dataset (data for six months) is from the
dense IoT network of PM monitors deployed in the educational campus of IIITH in Gachibowli
region of Hyderabad, a bustling IT and financial area [6].

• Differential analyses are done on the data to understand the effect of lockdown on PM values by
factoring in the yearly and seasonal variations.

• The Welch’s t-test is carried out to test whether the PM values have changed with respect to values
in pre-lockdown time period.

• Pearson pair-wise correlation coefficient is estimated between PM and temperature values to show
the effect of temperature changes on the PM values irrespective of lockdown.

Unlike the studies in [47, 46, 48], which only rely on the data publicly available for few sparsely placed
nodes in a city, the contribution in this study is the data from a dense deployment of low-cost sen-
sors. Also, the seasonal variation and temperature effect have not been considered in the studies while
calculating the impact of COVID-19 lockdown on the PM levels.

3.2 IoT Network Measurements

In this section, the measurement network for CPCB is explained first, followed by the details on the
measurement network for the IIIT-H network.

3.2.1 CPCB nodes

Fig.3.1 shows the six pollution monitoring stations deployed in the Hyderabad city by CPCB [7][49].
The node in Zoo Park was not functional for most of the measurement period, and hence, it has not been
considered for analysis. Each of these stations uses PM sensors with a resolution of 0.5 µg m−3, a
precision of ±2 µg m−3 (1-hour average), and accuracy of ±1% [50]. The CPCB website provide hourly
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Figure 3.1: Locations of CPCB pollution monitoring stations in Hyderabad.

averaged values for PM2.5 and PM10, both in µg m−3, in the csv format. For CPCB nodes, the data is
collected from January 1, 2019, to June 30, 2020.

3.2.2 IIIT-H nodes

Fig. 3.2 shows the deployment of PM monitoring nodes developed and deployed in IIIT-H [6][49].
The primary reason for selecting IIIT-H campus for deploying these nodes and performing this study
was a certain spatial and anthropogenic advantage that the campus provided. The campus has high
vehicular traffic density on a regular basis outside, while it also possessed green patches of land and a
dense population of students inhabiting inside, thus helping in highlighting the spatial and anthropogenic
causes that might influence ambient pollution levels. The objective of dense deployment (eight nodes
in 66 acres) was to measure PM value with high spatio-temporal resolution. Out of these eight nodes,
Node8 was not functional for most of the measurement period, and hence it has not been considered for
analysis. Each node has a Nova PM SDS011 sensor, with a resolution of 0.3 µg m−3 and a relative error
of max. ±15% (±10 µg m−3)[51]. Each node is connected to the internet through a WiFi connection
to either IIIT-H routers or a 4G based WiFi router, as mentioned in [6]. The IIIT-H nodes’ data have
been collected using the REST API from ThingSpeak server[52], where the nodes dump the sensor
data. Each node provides PM2.5 in µg m−3, PM10 in µg m−3, temperature in °C and relative humidity
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Figure 3.2: Deployment of PM monitoring IoT network in the IIIT-H campus.

every 15 seconds with an additional network lag. For IIIT-H nodes, the data collection is ongoing since
October 26, 2019, but the data considered for analysis in this paper is from January to June 2020.

3.3 Data Processing Techniques

3.3.1 Data pre-processing

The raw data collected from the CPCB and IIIT-H IoT networks must be pre-processed before any
analysis can be done. In this paper, we have considered two methods. The first one involves removing
null data points, while the second one consists of the removal of any possible outliers. This is necessary
to avoid any unnecessary deviations caused by extreme values. For removing outliers, Z-score [53] is
used.

3.3.2 Analysis techniques

In this section, four analysis techniques considered in this paper are briefly presented: averaging of
data, evaluating seasonal and yearly variations, and significance test (Welch’s t-test).

3.3.2.1 Averaging of data

Generally, a moving average is used for analyzing data. Averaging helps in smoothing out short-
term variations and reveal the long term trends or patterns. In this paper, hourly averaged data is used
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for finding statistical quantities such as mean, variance, and correlation between different quantities.
Weekly average plots have been used for easy visualization, while monthly average values have been
used for the change analysis.

3.3.2.2 Change analysis

For performing change analysis, February 2020 and April 2020 have been considered to represent
the pre-lockdown (normal) and total lockdown periods. The months of March and May in 2020 were
not considered for the same because these were transitional months, i.e., lockdown happened during
the last week of March 2020, and the Government began relaxing the total lockdown rules during May
2020. This made February and April the ideal months to highlight the contrast between pre-lockdown
and complete lockdown and establish a comparative understanding.

To understand the seasonal variations, the change for the monthly average PM values in April w.r.t.
February for the years 2019 and 2020 respectively are considered. For the yearly trend variations,
the relative change for the monthly average PM values in 2020 w.r.t. 2019 for February and April,
respectively, are considered.

In this paper, the definition of change ∆ and relative change R between monthly average PM values
of month m1 of year y1 w.r.t. the reference month m0 of the year y0 is given by

∆ = Mm1,y1 −Mm0,y0 (3.1)

and

R(%) =
∆

Mm0,y0
× 100, (3.2)

where Mm,y is the monthly average PM value for the month m in the year y.

3.3.2.3 t-test

The t test is used to decide if there is a significant difference between the means of two groups. Let
us denote the first group or dataset A as the PM values change for April 2019 w.r.t. February 2019.
This corresponds to seasonal change during normal times (without lockdown). Similarly, let us denote
the dataset B containing the PM values change for April 2020 w.r.t. February 2020. This dataset refers
to the seasonal change during lockdown (abnormal). Using these two data sets, the two hypotheses
corresponding to the t-test are

Hn : A == B

Ha : A ! = B
(3.3)

where Hn is called the null hypothesis (signifies no effect of lockdown on the PM levels) while Ha is
called the alternative hypothesis (signifies the effect of lockdown on the PM levels).
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Given that the two sets might have different means and variances, we employ Welch’s t-test, where
the test statistic is given by [54]

t =
B̄ − Ā

s
. (3.4)

Here Ā and B̄ are means of the sets A and B, respectively and s is the scaling parameter given by

s =

√
s2A
NA

+
s2B
NB

(3.5)

with NA and NB are the number of samples and sA and sB are standard deviations for the sets A and
B, respectively.

The performance parameter in t-tests is p-value, which is the probability of correctly deciding the null
hypothesis. A very small p-value means that such an extreme observed outcome would be improbable
under the null hypothesis, implying the null hypothesis can be rejected.

3.4 Analysis and Results

In this section, results are presented in two parts. Data from CPCB nodes is analyzed in the first part,
followed by the analysis of data from the IIIT-H IoT network.

3.4.1 CPCB nodes

The CPCB data is analyzed by first plotting the central moving averages of PM values. Next, the
change analysis is done taking seasonal and yearly variations into account, followed by the t-test.

3.4.1.1 Averaging of data

Fig. 3.3 presents the central moving averages over the window of three weeks for PM2.5 and PM10
values across the CPCB stations through January 1, 2019, to June 30, 2020. It can be observed that the
PM values are at a peak during winters (November-January). The PM values start decreasing with an
increase in temperatures in February and keep dropping through summer before hitting the lowest values
in Monsoon (June-September) because of rains. The values start increasing with the onset of winter in
October and again hit a peak in November. It can be also observed from Fig. 3.3 that both the PM
values are the lowest for the nodes at the HCU and ICRISAT. This is expected as HCU and ICRISAT
are green institute campuses while other nodes are in industrial areas. Note that the graph of weekly
average PM10 values for Sanathnagar station is missing in Fig. 3.3b due to data non-availability. It can
be also observed that the data at the Zoo Park node is missing for February 2020 and hence it has been
omitted in further analysis.

Table 3.1 shows the monthly average values of PM2.5 and PM10 for February 2019, April 2019,
February 2020, and April 2020. Similar to Fig. 3.3, it can be observed that the PM values in general de-
crease going from February to April irrespective of the lockdown, though the difference is significantly
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(a) PM2.5 (µg m−3)

(b) PM10 (µg m−3)

Figure 3.3: Central moving averages of PM values for the CPCB stations in Hyderabad with window
length of 3 weeks.

high for the months in the year 2020. Therefore, to understand the effect of lockdown, we need to take
into account yearly and seasonal variations.

3.4.1.2 Yearly variations

Table 3.2 shows the yearly variation in the PM values regarding change and relative change. It can
be seen that the PM2.5 values have slightly reduced in February, going from 2019 to 2020 in Bollaram
and HCU while they have increased marginally for other stations. Similarly, PM10 values in February
have decreased somewhat for Bollaram, HCU, and ICRISAT while showing a slight increase for other
stations. For example, the relative change in PM2.5 varies from -7.07% to 5.11% , while for PM10, the
relative change varies from -6.88% to 3.28%. However, the PM values have only decreased and that too
significantly in April across the two years for all stations. For example, the relative change in PM2.5
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Table 3.1: Monthly average PM values for CPCB stations

(a) PM2.5 (µg m−3)

Station Feb2019 Apr2019 Feb2020 Apr2020
Bollaram 46.15 40.12 42.88 27.75
HCU 37.48 31.23 35.13 23.06
ICRISAT 39.94 33.69 41.98 28.52
Sanathnagar 49.18 43.61 49.28 33.64
IDA 44.76 34.63 46.34 32.01

(b) PM10 (µg m−3)

Station Feb2019 Apr2019 Feb2020 Apr2020
Bollaram 105.74 94.65 98.46 61.94
HCU 98.79 86.67 93.33 59.31
ICRISAT 100.08 89.20 99.35 62.91
IDA 102.85 87.34 106.23 69.23

varies from -30.83% to -7.58% while for PM10, the relative change varies from -20.73% to -34.55%.
Thus, the effect of lockdown on reduction of pollution is visible in the yearly trends.

3.4.1.3 Seasonal variations

Table 3.3 shows the seasonal variations, i.e., change in the values of PM going from February to April
in the same year. Here, the year 2019 serves as a reference year for normal times. It can be seen that the
PM values decrease from February to April for both the years. This is as expected with the increase in
temperatures and can also be seen from Fig.3.3. The relative decrease in the seasonal variation in 2019
ranges from 11.32% to 22.61% for PM2.5 and from 10.48% to 15.07% for PM10. However, the relative
changes in the seasonal variation in 2020 are consistently show the relative decrease upwards of 30%.
This shows the effect of lockdown on PM values, that is a decrease.

3.4.1.4 t-test

All the results presented till now are based on observing the differences in the monthly averages.
To be sure that there is indeed change in the PM values, we consider t-test, which takes into account
the standard deviations of the two data sets. The data for set A belongs to the change in the hourly
averaged PM values for April 2019 w.r.t. February 2019. The data for set B belongs to the change in
the hourly averaged PM values for April 2020 w.r.t. February 2020. Table 3.4 presents the t-test results
for the same. It can be seen that the null hypothesis is rejected with more than 99.99% confidence for
all the stations for both PM2.5 and PM10 values validating the decrease in the PM values observed in
the Tables 3.2 and 3.3 caused because of the lockdown. Only exception is IDA which is also rejecting
the null hypothesis with 95% confidence. The CPCB stations at the industrial locations of Bollaram
and Sanathnagar show the biggest variation followed by the greener institute HCU and ICRISAT. IDA,
which is an industrial area at the outskirt of the city, is showing the least variation.
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Table 3.2: Yearly variation (2020 w.r.t. 2019)

(a) PM2.5

Station Change
(Feb)
(µg m−3)

Relative
Change
(Feb)
(%)

Change
(Apr)
(µg m−3)

Relative
Change
(Apr)
(%)

Bollaram -3.263 -7.07 -12.371 -30.83
HCU -2.347 -6.26 -8.168 -26.14
ICRISAT 2.042 5.11 -5.168 -15.33
Sanathnagar 0.099 0.20 -9.972 -22.86
IDA 1.584 3.53 -2.626 -7.58

(b) PM10

Station Change
(Feb)
(µg m−3)

Relative
Change
(Feb)
(%)

Change
(Apr)
(µg m−3)

Relative
Change
(Apr)
(%)

Bollaram -7.279 -6.88 -32.705 -34.55
HCU -5.458 -5.52 -27.358 -31.56
ICRISAT -0.730 -0.72 -26.296 -29.47
IDA 3.382 3.28 -18.108 -20.73

3.4.2 IIIT-H IoT network

The IIIT-H IoT network data is analyzed in three parts: averaging of data, Pearson r correlation,
and seasonal variation analysis. As the historical data of 2019 is not available, analyses corresponding
to yearly variations and t-test have not been carried out. Pearson’s r correlation analysis has been
performed to establish the correlation between temperature variation and PM values change.

3.4.2.1 Averaging of data

Fig. 3.4 presents the weekly average variation in PM2.5 and PM10 from January to July 2020. The
weekly average PM values are least for Node3 (located at the most interior part of the campus) and
highest for Node1 (situated in the campus’s main entrance gate). Of the seven nodes, Node4 shows
the steepest descent, especially after the lockdown happened, which implies that the most significant
decrease was recorded in Node4. The slope for the graphs of Node3 and Node7 remained almost
constant during the lockdown period, which denotes that these two nodes did not record any significant
change during the lockdown. It can be seen that data from Node8 is missing for the entire February and
has not been considered for further analysis.
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Table 3.3: Seasonal variation (April w.r.t. February)

(a) PM2.5

Station Change
(2019)
(µg m−3)

Relative
Change
(2019)
(%)

Change
(2020)
(µg m−3)

Relative
Change
(2020)
(%)

Bollaram -6.028 -13.06 -15.137 -35.29
HCU -6.247 -16.66 -12.068 -34.34
ICRISAT -6.248 -15.64 -13.459 -32.05
Sanathnagar -5.570 -11.32 -15.641 -31.73
IDA -10.123 -22.61 -14.334 -30.92

(b) PM10

Station Change
(2019)
(µg m−3)

Relative
Change
(2019)
(%)

Change
(2020)
(µg m−3)

Relative
Change
(2020)
(%)

Bollaram -11.090 -10.48 -36.517 -37.08
HCU -12.121 -12.26 -34.022 -36.45
ICRISAT -10.871 -10.86 -36.437 -36.67
IDA -15.507 -15.07 -36.998 -34.82

Table 3.4: t-test analysis

Station t-value
(PM2.5)

p-value
(PM2.5)

t-value
(PM10)

p-value
(PM10)

Bollaram -8.043 2.38e-15 -9.597 5.60e-21
HCU -3.862 0.00011 -7.331 4.88e-13
ICRISAT -5.455 6.26e-08 -7.050 3.62e-12
Sanathnagar -7.663 4.81e-14 - -
IDA -2.039 0.0417 -5.817 8.60e-09

3.4.2.2 Pearson’s r correlation analysis

From Table 3.5, it can be seen that there is a strong negative correlation between temperature and
PM values across all the nodes. It demonstrates that the PM values, even in normal times, decrease
with increase in temperature values going from winter to summer. This shows that although there is a
significant decrease in the PM values during the lockdown, not all PM values reduction can be attributed
to the lockdown. Therefore the seasonal and yearly variations along with t-test analysis are essential.

3.4.2.3 Seasonal Variation

Table 3.6 shows the comparison of the decrease of PM values in April 2020 with respect to February
2020 in terms of concentration Change (µg m−3) and Relative Change (%). It has been observed that
the decrease is noticeably different for both PM10 and PM2.5 for the seven node locations. The relative
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(a) PM2.5 (µg m−3)

(b) PM10 (µg m−3)

Figure 3.4: Central moving average plot with window length of 3 weeks for IIIT-H IoT nodes.

change for 7 Nodes in the IIIT-H campus ranged from -31.3% to -55.05% in case of PM2.5 and -39.26%
to -56.94% for PM10. The difference in the values for the seven nodes is significant and considering
that all nodes are in a small area of 66 acres shows the variation in the level of human activities in a
small campus and the need for a dense deployment of PM monitoring nodes for localizing the events of
cause for the PM values.

Table 3.6b show that almost every node deployed in the campus of IIIT-H show a consistent relative
change (%) of at least 39% to maximum of 56% which is a variation of 16%. But in Table 3.6a it
can be observed that the decrease in PM2.5 values show a similar trend as the CPCB stations deployed
across the city, with few nodes showing a comparatively slighter decrease in terms of change (µg m−3)
even though the relative change (%) is higher.The relative change is from a minimum of around 31%
to a maximum of 55% which amounts to a difference in around 24% of relative change in the campus.
Consideration of the sources of PM2.5 in the surroundings of the respective nodes can give a possible
explanation of the low or high drop of the PM2.5 values measured by the individual nodes in these
locations.

22



Table 3.5: Pearson’s r correlation coefficient analysis for Jan 2020 to Mar 2020 variation (Temperature
vs PM)

Pearson’s
r

Node1 Node2 Node3 Node4 Node5 Node6 Node7

PM2.5 -0.67 -0.58 -0.80 -0.81 -0.37 -0.85 -0.74
PM10 -0.86 -0.64 -0.87 -0.80 -0.42 -0.83 -0.74

Table 3.6: Nodewise monthly average, change and relative change values for PM in IIIT nodes.

(a) PM2.5

Node
ID

Feb
2020
(µg m−3)

Apr
2020
(µg m−3)

Change
(µg m−3)

Relative
Change
(%)

Node1 40.28 27.21 -13.07 -32.44
Node2 42.58 27.38 -15.20 -35.71
Node3 25.882 12.75 -13.12 -50.72
Node4 41.78 18.78 -23.00 -55.05
Node5 36.74 25.24 -11.50 -31.3
Node6 31.79 15.19 -16.60 -52.22
Node7 28.25 17.73 -10.51 -37.22

(b) PM10

Node
ID

Feb
2020
(µg m−3)

Apr
2020
(µg m−3)

Change
(µg m−3)

Relative
Change
(%)

Node1 73.132 33.843 -39.289 -53.72
Node2 49.578 30.112 -19.466 -39.26
Node3 37.838 18.901 -18.937 -50.05
Node4 60.772 26.171 -34.601 -56.94
Node5 58.371 33.803 -24.568 -42.09
Node6 54.989 24.365 -30.624 -55.69
Node7 47.001 25.134 -21.867 -46.52

• Node1 and Node2, even though being the closest to the vehicular pollution from the six-lane
road in front of the campus, do not show a substantial decrease in terms of change (µg m−3) and
relative change (%) because of the construction and repair of the same road taken up by the Greater
Hyderabad Municipal Corporation (GHMC, the civic body that oversees the city of Hyderabad)
during lockdown [55], which provided uninterrupted access to the repair and construction of the
roads and flyovers. These construction hampered the expected decrease of the PM2.5 values even
without the significant source of pollutants, vehicles being absent during the lockdown.

• Node4 shows the maximum decrease in both changes of -23.0 µg m−3 and relative change of
-55.05 % during the lockdown. The area surrounding Node4 is an online food and other e-
commerce order delivery point and is busy round the clock with delivery vehicles before the
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lockdown and has a football ground nearby, typically used for sports activities before the lock-
down. During the lockdown period, the area around Node4 is completely idle with no above
mentioned human activities.

• Node6 shows the second-highest relative change of -52.22 % and change of -16.60 µg m−3 during
the lockdown. The node is located where the sources contributing to the PM2.5 values such
as massive scale and round the clock fuel burning for cooking in the canteen just beside and
dispersion of settled dust by people moving around during the rush hours of classes throughout
the day have been entirely devoid due to the suspension of classes, and a closure of the canteen
during the lockdown period, contributed to a higher decrease in PM2.5 values.

• Node3, Node5, and Node7 show the least amount of change around 10 µg m−3. Node3 offers a
higher relative change value of -50.72% even with a change of just -13.12 µg m−3 as the initial
value 25.882 µg m−3 of this node is lowest the other nodes in February 2019 and are in locations
where the human activities are much less even before the lockdown than the other nodes. Node3
and Node7 are in residential areas for students and faculty away from main activities, and Node5
is placed behind the research block, with low vehicle movement or construction activity,away
from the significant PM values sources like vehicular pollution or large scale fuel burning for
cooking. As the PM2.5 sources in these locations are already low even before the lockdown, the
complete shutdown during the lockdown did not show substantial improvement in PM2.5 values.

The above points explain how PM2.5 decreased due to lockdown in only the human activities’ locations
(Node4 and Node6). Even with the primary source of PM2.5 values, i.e., vehicular pollution was nearly
nil in Node1 and Node2, other human activities like construction of the road contributed to the PM2.5
values. Nodes with already lower values of PM2.5 even before the lockdown - Node3, Node5, and
Node7 - did not show substantial change due to lockdown. Note that the variation across the different
nodes for PM10 is not high when compared to PM2.5 which is a similar pattern seen in CPCB data.
Hence, any explanation for PM10 has not been provided.

3.5 Conclusion

In this study, by factoring in the yearly and seasonal trend analysis and applying t-test on the CPCB
data, it has been demonstrated that there is a consistent decrease in the PM values across all the nodes
because of the COVID-19 lockdown. A similar trend is observed for the data obtained for a smaller area
of IIIT-H campus using the IoT sensor network deployed. However, the correlation analysis has shown
a strong negative correlation between the temperature and the PM values demonstrating that not all the
decrease in the PM values is because of lockdown. Moreover, the considerable variation in the effect
of lockdown on the reduction in PM values in a small IIIT-H campus shows the importance of dense
deployment for PM monitoring, identification of localised sources of pollution and the contribution of
each source to the values.
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Chapter 4

Spatial Factor Analysis of Mobile IoT Data : A Case Study on Particulate

Matter across India

This chapter provides the motivation for monitoring air pollution and using IoT as an enabler for it,
followed by global initiatives around the world for tackling air pollution, conventional monitoring sensor
networks, low-cost sensors for air pollution monitoring, and a thorough survey of various existing IoT
air pollution monitoring networks around the world.

4.1 Introduction

Stationary IoT deployment have been traditionally used for air pollution monitoring and analysis.
Although stationary IoT nodes enable in better understanding the ambient pollution levels during con-
tinuous monitoring and account for temporal variations of pollution, they lack in understanding cross-
sectional changes. Therefore, in order to consider the effects of spatial variations on ambient pollution
levels, it is essential to incorporate an effective mobile IoT deployment strategy. Recent studies have
shown several challenges in mobile IoT data handling, storage and analysis for air pollution data due to
the involvement of several variables and factors that play a vital role in ambient pollution levels. Studies
like [42, 41] have proposed innovative methodologies to monitor and analyze mobile PM data to account
for spatial variability. The role of vegetation cover in PM variation has also been cited in many research
studies over the years [56, 57].

For this study, a mobile IoT node was deployed that collected PM data over a diverse range of geo-
locations across India, thus creating a moving object database. This moving object database is then
subjected to thematic interactions with spatial and anthropogenic factors to retrieve interesting patterns
in the data. By doing so, a novel methodology of data structuring and analysis is conceptualized that
accounts for the spatial variations in the PM data. The specific contributions of this paper are three-
fold. Firstly, it’s the PM data collection for a large range of geo-locations across the country that
showcases a diverse spatial variation during a limited time period using a novel self-made IoT node.
Secondly, the analysis of the spatially varying data to identify PM value peaks and their corresponding
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Figure 4.1: Architecture Diagram

activities happening near the location. And lastly, the proposed factor-based data structure containing the
minimum, mean, maximum and standard deviation of PM values obtained as a result from interactions
between different vegetation and anthropogenic factors corresponding to each geo-location.

The rest of the paper is organized as follows. Section II describes the hardware specifications of
the mobile IoT node and the adopted data processing techniques. Section III discusses the analysis and
results obtained, while Section IV concludes the paper.

4.2 Hardware Specifications and Data Processing

4.2.1 Hardware Specifications

The IoT node has primarily four integral components: an ESP8266 micro-controller unit (NodeMCU)[58],
with an inbuilt Wi-Fi module, an SDS011 Nova PM sensor[59] to measure PM2.5 and PM10, a Neo-6
GPS sensor module[60] used to fetch geo-location values, and a portable broadband router to provide
internet connectivity for offloading the data to the cloud server[52]. Although the sampling period for
the node was 30 seconds, there were missing data points during collection due to internet connectivity
issues and the GPS sensor unable to capture Lat-Long values for certain locations. Fig.4.2 shows the
mobile IoT node used in this study[6].
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Figure 4.2: IoT Node (Hardware)

4.2.2 Data Collection

4.2.2.1 Data Collection Campaign

The IoT node was carried inside a car with open windows and travelled along the route (as seen
in Fig.4.3) in order to collect mobile data. The PM data and the corresponding Latitude-Longitude
(Lat-Long) values of a particular geo-location were collected using the REST API from ThingSpeak
server[52]. The first phase of the mobile node journey took place between 24th October, 2020 to 25th
October, 2020. The journey began from Hyderabad, Telangana and ended in Agra, Uttar Pradesh,
covering 1021 km (approx.). Along the journey, the mobile node traversed through the states Telangana,
Maharashtra, Madhya Pradesh, Rajasthan and Uttar Pradesh. The second phase was longer than the first
and took place between 6th December, 2020 to 10th December, 2020, from Agra, Uttar Pradesh and
it ended in Bengaluru, Karnataka, covering 1655 km (approx.). During the journey, the mobile node
traversed through the states Uttar Pradesh, Rajasthan, Gujarat, Maharashtra and Karnataka.

4.2.2.2 Data Preparation

A total of 8482 PM data points were collected, out of which only 4653 PM data points were further
processed based on completeness of the observations of the IoT node (collected every 30 seconds) in
two stages of the journey. Out of the 4653 points, 4274 points were in National Highways (NH), which
is what we considered for our study. Out of these 4274 points, 1205 points were from the first phase
of the journey, whereas 3069 points were from the second phase of the journey. Subsequently, the data
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Figure 4.3: Mobile IoT Node Data

is subjected to preliminary data cleaning process. The data cleaning process involves removal of null
data points and outliers. In order to perform outlier removal, a standard Z-score based outlier removal
technique is employed [53].

4.2.3 Data Processing Techniques

4.2.3.1 Factor-based data structure

The PM10 data is classified into two ranges, 0<PM10<100 and PM10>100, as 100 µg m−3 is the
satisfactory level threshold [7]. Furthermore, the data points are categorized corresponding to their pos-
sibly associated anthropogenic factors in their vicinity, which are labelled on the basis of: (a) Act or
Non-Act: The data points are checked if it is located near any activity (Act) zone or not. An activity
zone is considered to be any place which has significant industrial activities (industry zones), commer-
cial activities (market/commercial areas) or traffic activities (toll plazas/road junctions) (b) Settlement
patterns (Rural/Semi-Urban/Urban): After Act/NonAct classification, it is further checked if the data
point is in a rural (ActR/NonActR), semi-urban (ActS/NonActS) or urban (ActU/NonActU) area.

After classifying the PM10 ranges into respective categories such as NH, Act/NonAct, ActR/NonActR,
ActS/NonActS and ActU/NonActU, the PM10 ranges are represented in the form of number of data
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points (Count), minimum (Min), mean (Mean) and maximum value (Max) along with its standard devi-
ation (STD) each of the respective PM10 range.

4.2.3.2 Normalized Difference Vegetation Index (NDVI)

This is the most commonly used vegetation index for observing greenery[61]. In general, Healthy
vegetation is good absorber of electromagnetic spectrum in visible reason. Chlorophyll contains in a
greeneries highly absorbs Blue (0.4 - 0.5 µm) and Red (0.6 - 0.7 µm) spectrum and reflects Green (0.5
– 0.6 µm) spectrum. Therefore, our eye perceives healthy vegetation as green. Healthy plants have high
reflectance in Near Infrared (NIR) between 0.7 to 1.3 µm. This is primarily due to internal structure of
plant leaves. Due to high reflectance in NIR and high absorption in Red spectrum, these two bands are
used to calculate NDVI.

NDV I =
NIR–Red

NIR + Red
, (4.1)

where NIR is the reflectance in the Near Infrared band and Red is the reflectance in the Red band.
In this study, Landsat 8 OLI images [62] were used for NDVI calculation, hence NIR is Band 5 and
Red is Band 4. The NDVI value varies from -1 to 1. Higher the value of NDVI, higher or denser the
greenery. In this study, NDVI values corresponding to each data point of the mobile node have been
calculated for buffer regions of 500 m and 1 km respectively. The NDVI values are accounted for in
settlement pattern analysis in the Factor-based data structure in order to associate the role of vegetation,
if any, in the PM10 level variations of the specific settlement region. In this study, the NDVI values
have been categorized into two ranges: 0-0.2 (Low vegetation), 0.2-0.4 (Moderate to high vegetation).
Fig.4.2 represents the architecture diagram of the study comprising of two blocks (IoT Node and Spatial
Database and Processing) that interact with each other, thus providing a generic framework to collect
and analyze mobile data.

4.3 Analysis and Results

In this section, results are presented in two parts. In the first part, spatial variation of PM concentra-
tion is discussed to highlight regions with peak PM values, followed by factor-based data structuring of
the entire mobile IoT data.

4.3.1 Peak PM10 values throughout the mobile node journey

Few road stretches within different routes were identified in the overall mobile node journey in
Fig.4.3 that showed significantly higher PM10 levels (PM10>100) during the journey as seen from
Fig.4.4:
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Figure 4.4: PM10 Plot of Mobile IoT Node Journey

• Hinganghat to Nagpur : This route had a stretch from 286-380 kms as seen in section a1 in Fig.4.4
that witnessed PM10>100. Possible reason could be the on-going construction of highway as part
of the Bharat Mala project[63].

• Gwalior to Agra : The stretches from 898-945 kms. and 1003-1025 kms. in this route as seen
in sections b1 and b2 respectively in Fig.4.4 witnessed PM10>100, which could be attributed to
high traffic and a lot of under-construction roads in the stretch.

• Etah to Jaipur : This route had two stretches from 1080-1258 kms and 1565-1657 kms. as seen
in sections c1 and c2 respectively in Fig.4.4 having PM10>100. Both these stretches had very
high traffic, accompanied by residual particle emissions from the nearby marble industries and
factories.

• Bharuch to Surat and Valsad to Vapi: This route also had two stretches from 1879-1974 kms and
2021-2065 kms. as seen in sections d1 and d2 respectively in Fig.4.4 having PM10>100, which
could be attributed to the moderate to high traffic experienced in this stretch and also the fact
that this route falls under the Gujarat Industrial Development Corporation (GIDC) corridor, thus
experiencing industrial aerosol emission on a regular basis.

• Vasai-Virar to Thane : This route had a stretch from 2128-2164 kms as seen in section d3 in
Fig.4.4 that witnessed PM10>100 points. Such PM behavior could be due to the extremely heavy
traffic on account of this stretch being part of a highly urbanized route.

4.3.2 Peak PM2.5 values throughout the mobile node journey

4.3.3 Factor Analysis

The factor-based data structure presented in this paper can be used to represent PM values for the
following ranges:

• PM10: PM10>100 µg m−3 and 0<PM10<100 µg m−3.
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Figure 4.5: PM2.5 Plot of Mobile IoT Node Journey

• PM2.5: PM2.5>100 µg m−3, 60<PM2.5<100 µg m−3 and 0<PM2.5<60 µg m−3.

4.3.3.1 PM10>100 µg m−3

Following deductions can be made from Fig.4.6:

• Act vs NonAct: The PM10 levels of points that fall under Act are a little higher than Non-Act.
This goes to show that activities around points in this PM10 range have limited influence PM10
levels and are largely local.

• ActR vs ActS vs ActU: Further looking at Act points, we can see that the PM10 levels in the urban
region are the highest, followed by the semi-urban region. The PM10 levels in the rural region are
significantly lesser than urban and semi-urban regions. Discussing about the vegetation profile of
all the three settlement regions, the number of low vegetation points is significantly larger than
moderate to high vegetation points. The gap between number of low and mod-high vegetation
points doesn’t change much as buffer size increases. Thus, vegetation of the three regions don’t
have any direct influence over the PM10 levels.

• NonActR vs NonActS vs NonActU: Checking into the NonAct points, we can see that the PM10
levels in the semi-urban region are the highest, followed by the urban region. In this scenario as
well, the PM10 levels in the rural region are significantly less than semi-urban and urban regions.
Here, the gap between rural and semi-urban/urban is even larger than Act points. Observing the
vegetation profile, we find that the PM10 levels for low vegetation region is greater than that
of mod-high vegetation region within the 500 m and 1 km buffer zone for urban points. For
rural region, the low vegetation points show greater PM10 levels than mod-high vegetation points
within 500 m buffer only. Therefore, it can be deduced that in NonActR and NonActU regions,
vegetation plays a key role in influencing the PM10 levels (cannot say the same for NonActS as
it has no mod-high vegetation points).
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Table 4.1: PM10 distribution corresponding to Vegetation Profile for PM10>100 µg m−3

(a) Non-ActR (500 m buffer)

NDVI
Range

Count Min
(µg m−3)

Mean
(µg m−3)

Max
(µg m−3)

STD
(µg m−3)

0-0.2 42 101 126.42 250.3 33.15
0.2-0.4 25 106.1 120.37 155.7 12.24

(b) Non-ActU (500 m buffer)

NDVI
Range

Count Min
(µg m−3)

Mean
(µg m−3)

Max
(µg m−3)

STD
(µg m−3)

0-0.2 44 101.5 175.73 344.1 76.45
0.2-0.4 9 100.1 165.64 481.4 121.92

(c) Non-ActU (1 km buffer)

NDVI
Range

Count Min
(µg m−3)

Mean
(µg m−3)

Max
(µg m−3)

STD
(µg m−3)

0-0.2 42 106 178.95 344.1 76.77
0.2-0.4 11 100.1 155.18 481.4 111.54

4.3.3.2 0<PM10<100 µg m−3

Fig.4.6 provides some insightful points as stated below:

• Act vs NonAct: The mean PM10 levels of Act is almost twice as much as that of the NonAct.
This goes to show that industrial and other economic activities around points in this PM10 range
influence PM10 levels significantly.

• ActR vs ActS vs ActU: The settlement patterns of the Act points show that the PM10 levels in
the semi-urban areas are followed closely by urban and rural areas with almost similar PM10
levels. This could be due to Industrial Zones (IDZ) outside the primarily residential rural and
urban settlements. The vegetation profile within the 1 km buffer for the rural and semi-urban
settlement region showed that the PM10 levels of low vegetation region were greater than that of
the mod-high vegetation region. This goes to highlight the influence of vegetation in influencing
the PM10 at low levels in ActR and ActS points.

• NonActR vs NonActS vs NonActU: The settlement pattern shows that 1790 out of 2577 NonAct
points have rural settlement. That implies the PM10 level comparison amongst different settle-
ment patterns here would yield inconclusive results. Also, the vegetation profile around these
settlement regions have predominantly low vegetation upto 1 km buffer. Therefore, it is not possi-
ble to determine the influence of vegetation on low to moderate PM10 levels for these settlement
patterns.

Some key takeaways from the above factor analysis of PM10 values can be noted as below:
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Table 4.2: PM10 distribution corresponding to Vegetation Profile for 0<PM10<100 (1 km buffer)

(a) ActR

NDVI
Range

Count Min
(µg m−3)

Mean
(µg m−3)

Max
(µg m−3)

STD
(µg m−3)

0-0.2 262 14.4 53.22 100 18.38
0.2-0.4 92 21.8 45.97 89.8 15.08

(b) ActS

NDVI
Range

Count Min
(µg m−3)

Mean
(µg m−3)

Max
(µg m−3)

STD
(µg m−3)

0-0.2 167 14.6 58.12 99.7 23.64
0.2-0.4 67 23.4 45.96 99.6 18.24

• The influence of Activity around NH roadways on PM levels can be seen for both the ranges of
PM10 values. It can be noted that the gap between PM10 values of Act and Non-Act regions is
almost double in case of 0<PM10<100, whereas for PM10>100, the gap is not that significant.

• The PM10 levels were least for rural areas (irrespective of any activity around), whereas the PM10
levels were the highest for semi-urban areas having no activity around for both the ranges of PM10
values as they tend to lie on transport corridors.

• The influence of vegetation within 1km buffer over the PM levels in the range 0<PM10<100 can
be noticed for Activity regions having rural and semi-urban settlements. The PM10 levels in the
range PM10>100 are influenced by vegetation within 500 m buffer in the Non-Activity regions
having rural and urban settlements, and the vegetation within 1 km buffer influences the PM10
levels in Non-Activity regions having urban settlements.

4.3.3.3 PM2.5>100 µg m−3

Following points can be noted from Fig.4.7:

• Act vs NonAct: 287 out of 310 NH points fall under Activity region. Therefore, the PM2.5 level
comparison between Activity and Non-activity region points would yield inconclusive results.

• ActR vs ActS vs ActU: Viewing into the settlement pattern of the Activity points around NH,
it can be seen that the urban region has highest PM2.5 levels, followed closely by semi-urban
region points, which exceeds the PM2.5 levels of rural regions quite significantly. Looking into
the vegetation profile of the three regions, it can be seen that for rural and semi-urban regions,
almost all points have Low vegetation. For urban region points within 1km buffer, the PM2.5
levels for Low vegetation points are greater than that of Moderate vegetation points (Almost
all Low vegetation points within 500m buffer for urban region). Therefore, it can be said that
vegetation influences a little in the PM2.5 levels of urban areas having activity around NH.
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• NonActR vs NonActS vs NonActU: 19 out of 23 Non-activity region points of NH fall under
semi-urban regions. Therefore, comparing the PM2.5 levels in the different settlement regions
wouldn’t yield any conclusive results. It can also be noted that the all these semi-urban points
have low vegetation profile, thus inhibiting from making any deductions regarding influence of
vegetation on the PM2.5 levels.

Table 4.3: PM2.5 distribution corresponding to Vegetation Profile for PM2.5>100 (ActU 1km buffer)

NDVI
Range

Count Min
(µg m−3)

Mean
(µg m−3)

Max
(µg m−3)

STD
(µg m−3)

0-0.2 69 101 166.82 228.8 38.17
0.2-0.4 19 100.1 155.8 190.9 27.81

4.3.3.4 60<PM2.5<100 µg m−3

From Fig.4.8, the following conclusions can be drawn:

• Act vs NonAct: The PM2.5 levels of the Activity region around NH are greater than that of the
Non-activity region. Therefore, it goes to show that Activity greatly influences the PM2.5 levels
around NH.

• ActR vs ActS vs ActU: Unlike the Red zone, the yellow zone showed an opposite result in PM2.5
behavior across the different settlement regions. Here, it can be observed that the PM2.5 levels in
the Activity regions of rural areas are the highest, closely followed by semi-urban points, whereas
the urban points showcase the least PM2.5 levels. Viewing the vegetation profiles across the three
settlement regions, all the three regions have mostly Low vegetation within 500m and 1km buffer.
Although within 1km buffer for rural and urban points, the no. of Low and Mod vegetation points
are comparable. But the PM2.5 levels in those Mod vegetation points are greater than that of the
Low vegetation points. Therefore, it can be said that vegetation has no effect on PM2.5 levels in
the Activity regions around NH.

• NonActR vs NonActS vs NonActU: The settlement pattern around the Non-activity regions of
the NH points show predominantly rural and urban areas. It can be seen that the PM2.5 levels
in the rural areas is greater than the PM2.5 levels of urban areas. The vegetation profiles of both
these settlement regions show that the PM2.5 levels for Low vegetation points is greater than
that of the Moderate vegetation points in urban areas, whereas in rural areas, the PM2.5 levels of
Moderate vegetation points exceed the PM2.5 levels of Low vegetation points. Therefore, it can
be conclusively said that vegetation influences the PM2.5 levels of urban NH points having no
activity.
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Table 4.4: PM2.5 distribution corresponding to Vegetation Profile for 60<PM2.5<100 (NonActU)

(a) 500m buffer

NDVI
Range

Count Min
(µg m−3)

Mean
(µg m−3)

Max
(µg m−3)

STD
(µg m−3)

0-0.2 81 60.3 71.19 91.8 9.54
0.2-0.4 14 62.8 70.05 77.9 5.26

(b) 1km buffer

NDVI
Range

Count Min
(µg m−3)

Mean
(µg m−3)

Max
(µg m−3)

STD
(µg m−3)

0-0.2 77 60.3 71.17 91.8 9.73
0.2-0.4 18 62.8 70.39 77.9 5.15

4.3.3.5 0<PM2.5<60 µg m−3

Fig.4.8 lays out the following deductions:

• Act vs NonAct: The Activity region around NH showed PM2.5 levels more than twice the PM2.5
levels of Non-activity region points around NH. This highlights that the PM2.5 levels around NH
are highly influenced by activities around the NH.

• ActR vs ActS vs ActU: The settlement patterns near the Activity region of NH showed similar
levels of PM2.5 in semi-urban and rural areas, closely followed by the PM2.5 levels of urban
areas. The vegetation profile around rural and semi-urban settlements within 1km buffer showed
the PM2.5 levels in Low vegetation regions to be greater than that of Mod vegetation regions.

• NonActR vs NonActS vs NonActU: The settlement patterns near the non-activity regions of NH
points were mostly rural, followed by urban settlements. Both these settlement regions showed
similar PM2.5 levels. It can also be noted that the settlement regions were predominantly having
Low vegetation within 1km buffer, thus not helping to understand any possible effect of vegetation
on PM2.5 levels.

Some key takeaways from the above factor analysis of PM2.5 values can be noted as below:

• The influence of ”Activity” around NH roadways on PM2.5 levels can be seen for the range
0<PM2.5<100.

• The PM2.5 levels were highest for rural areas around NH roadways (irrespective of any activity
around NH) for 60<PM2.5<100, whereas he PM2.5 levels were the least for urban areas around
NH roadways (irrespective of any activity around NH) for 60<PM2.5<100.

• The influence of vegetation within 1km buffer over the PM2.5 range 0<PM2.5<60 can be noticed
for Activity regions having rural and semi-urban settlements. For PM2.5>100, vegetation within
1km buffer influences the PM2.5 levels in Activity regions having urban settlements.
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Table 4.5: PM2.5 distribution corresponding to Vegetation Profile for 0<PM2.5<60 (1km buffer)

(a) ActR

NDVI
Range

Count Min
(µg m−3)

Mean
(µg m−3)

Max
(µg m−3)

STD
(µg m−3)

0-0.2 240 13 39.93 59.9 11.75
0.2-0.4 92 19.5 37.15 59.8 10.45

(b) ActS

NDVI
Range

Count Min
(µg m−3)

Mean
(µg m−3)

Max
(µg m−3)

STD
(µg m−3)

0-0.2 139 11.4 40.67 59.9 14.37
0.2-0.4 65 20.4 36.59 59.6 10.41

4.4 Conclusion and Future Scope

In this study, by performing factor-based hierarchical data structuring, accompanied by section-wise
PM10 profiling on the overall data collected using the mobile IoT node, helped assess impact of activities
like commercial and industrial on the ambient PM10 levels of a location. It has also been observed that
rural settlement regions experience lesser PM10 levels in general than semi-urban and urban regions.
The study also highlighted the limited influence of vegetation cover around a location over its PM10
levels, indicating a more local effect. It has also been evidently observed in this study how economic
and environmental factors are important in understanding moderate to high PM levels across a region.
The framework proposed in this study for analyzing mobile IoT data can be extended for the analysis of
moving object databases. The insights garnered from this case study accounted for the spatial variability
of PM, which goes on to promote similar mobile IoT deployment strategies in areas that exclusively have
stationary IoT deployment for PM monitoring.
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Count Min Mean Max STD 
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Count Min Mean Max STD 
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Count Min Mean Max STD 
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Count Min Mean Max STD 

210 6.7 30.36 97 19.93 

Count Min Mean Max STD 

556 20.3 51.57 99.6 18.91 
Count Min Mean Max STD 

577 5.9 28.93 99.4 19.51 

Count Min Mean Max STD 

552 100.1 160.56 481.4 53.6 

Count Min Mean Max STD 
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Count Min Mean Max STD 
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Figure 4.6: Factor-based Hierarchical Data Structures (PM10)
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Figure 4.7: Factor-based Hierarchical Data Structure (PM2.5>100)
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Figure 4.8: Factor-based Hierarchical Data Structures (0<PM2.5<60 and 60<PM2.5<100)
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Chapter 5

Concluding Remarks

5.1 Conclusions

The research carried out in this thesis was to understand how IoT deployment in various settings can
help in analysis of pollution data and provide valuable clues on its causative factors. The latter was
achieved by doing both spatial neighbourhood and temporal analysis on these data-sets. The research
showcases a comparative analysis between stationary and mobile IoT node deployment by carefully
performing case studies of respective deployment strategies. In the study shown in chapter 3, temporal
variation of PM concentration is analyzed in order to understand the PM data that is captured during the
COVID-19 lockdown using two stationary IoT networks deployed in the Hyderabad city. The temporal
variation analysis showed by means of yearly and seasonal trends that the lockdown caused a steep
decline in human-centric activities such as vehicular traffic, thus resulting in a downfall in PM values.
Although it also highlighted that not all decline could be accounted to the lockdown as the temperature
and PM were negatively correlated during that time, which happened to be the onset of summer. Chapter
4 talks about a mobile IoT deployment case study where the focus is on the spatial variation of PM
data. The analysis highlighted the impact of commercial/industrial activities, settlement patterns and
vegetation profile around a location by evaluating the corresponding PM distribution.

The research was initially approached to study the two distinct types of IoT node deployment strate-
gies and their respective distinction in terms of data collection and analysis. This led to the evaluation
of factors that account for PM variation in respective modes of deployment. This work, by performing
separate sets of studies, highlights the different ways by which ambient PM levels can be influenced.
The importance of both spatial and temporal variation of PM captured by mobile and stationary IoT
nodes respectively provides a holistic picture of PM levels of a location, the factors that influence it and
approximately by how much. In most of the IoT-based air pollution research, mostly the temporal data
is subjected to in-depth analysis and the spatial data is either studied in a limited way or completely
overlooked. By bringing these together, it has helped in improving the understanding of causes.

There are a lot of lessons and inferences that the results presented in this thesis contributes. In
stationary IoT deployment, it can be seen how historical data collected over a course of time enables to
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understand the PM behavior of a location. It also showed how much influence meteorological data such
as temperature and humidity have over ambient PM levels. The mobile IoT deployment accounted for
the influence of spatial and anthropogenic factors in deciding the PM variation of a location.

Although the work presented in this research yielded some insightful results in terms of explaining
PM behavior, there are still a number of challenges that this work has not tackled successfully. There are
a few generic challenges (common to both stationary and mobile IoT deployment) such as loss of data
due to sensor failure and internet connectivity. Some specific challenges in stationary IoT deployment
include devising strategies to ensure optimum spatio-temporal resolution of the stationary IoT network
deployment and dealing with long-term maintenance issues of the network to ensure seamless collection
of historical data. Mobile IoT deployment faces a wide range of challenges, some of which are, tackling
bias in data caused due to inconsistency in vehicle speed where mobile node is mounted and deciding
the best fit sampling strategy before the mobile node data collection campaign.

5.2 Future Scope

Although the research presented in this thesis appears exhaustive, it has barely scratched the surface.
During the course of the research, lots of challenges have been encountered, thus providing abundant
scope of work to be done in the days to come. Adoption of efficient deployment and sampling strategies
while setting up a stationary IoT network for pollution monitoring in a given area based on the geospa-
tial and anthropogenic features of the area is one of the biggest challenges that could be addressed.
Future researchers can come up with best fit sampling strategy to handle dynamic data obtained from
mobile IoT node, which can be extended as a generic strategy for moving object databases. Another
possible scope would be to explore the role of factors like speed of the vehicle carrying the mobile IoT
node in influencing the PM values and whether it creates a bias in the measuring the ambient PM levels
compared to a stationary node. Other pollutants could be identified that could have direct or indirect
influence over ambient PM levels. Lastly, coming up with a hybrid pollution monitoring system com-
prising of both stationary and mobile IoT nodes for optimum spatio-temporal resolution and pollution
accountability.
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