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Abstract

The conventional method of manually reading analog meters to track consumption trends is both
laborious and costly. Moreover, it falls short in effectively managing sustainable water supplies, neces-
sitating accurate monitoring techniques to provide real-time insights into water usage for consumers.
While digital water meters have been introduced, their high cost makes them impractical for widespread
adoption, and they lack analytical capabilities for interpreting consumption patterns. In contrast, tradi-
tional analog water meters boast simplicity, low power consumption, durability, and reliability, but they
still rely on manual readings, which is inconvenient. To address this issue, an automated data-capturing
system is required to transmit real-time meter readings to a cloud server. Smart water meters, powered
by robust machine learning (ML) and deep learning (DL) algorithms for meter reading detection, can
analyze the data collected to gain valuable insights into water consumption patterns and detect leaks,
facilitating more efficient water management. Ultimately, smart water monitoring devices can empower
users to reduce their water usage and contribute to water conservation efforts. Keeping all these aspects
in mind, the thesis can be divided into three parts:

Firstly, this thesis introduces an IoT based economic retrofitting setup for digitising the analog water
meters to make them smart. The setup contains a Raspberry-Pi microcontroller and a Pi-camera mounted
on top of the analog water meter to take its images. The captured images are then preprocessed to
estimate readings using a ML model. The employed ML algorithm is trained on a rich dataset that
includes digits from the images of water meters captured by the hardware setup for ten days. The
readings are posted on a cloud server in real-time using Raspberry-Pi. High temporal resolution plots
of flow rate and volume are generated to derive inferences. The collected data can be used for deriving
water consumption patterns and fault detection for efficient water management.

After that, the thesis proposes a DL-based algorithm which is used for improving the performance
of digit detection from IoT-based analog water meters. The DL algorithm is trained on a rich dataset of
over 160,000 images collected from six water nodes deployed at locations with different environmental
conditions. A detailed comparison between the proposed DL and ML algorithm is made based on de-
tection accuracy, feature analysis, error analysis, and computational complexity analysis. It is observed
that compared to the ML model, the proposed DL model maintained a higher detection accuracy and is
more generalized in terms of feature extraction, which makes the algorithm robust.

Finally, the thesis presents a comprehensive analysis of water supply behaviour on an educational
campus, focusing on two distinct regions: student hostels and faculty/staff quarters. The investigation
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delves into the impact of water supply patterns on a monthly and weekly basis. Notably, it highlights
how each month, with its unique characteristics such as holidays, exams, and class schedules, influences
the water supply in both regions. One key difference between the two regions is that students reside in
one, leading to significant variations in water usage based on the number of holidays. Conversely,
the other region accommodates families, resulting in a consistent water requirement regardless of col-
lege holidays. The findings from this analysis are crucial for understanding water distribution patterns,
particularly within intermittent water supply (IWS) systems, with the ultimate goal of enhancing the
efficiency and robustness of water distribution. By thoroughly examining the water supply behaviour in
an educational campus and considering various factors that influence it, this work contributes to a better
understanding of water management on campus.
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Chapter 1

Introduction

1.1 Motivation

The Internet of Things (IoT) is driving a transformative revolution across the globe, interconnecting
billions of devices and objects to the Internet, enabling seamless communication, data exchange, and
automation. This interconnected ecosystem is transforming various industries and aspects of daily life
without much human interference [1]. From small wearables to large assembly machines, IoT finds
applications in diverse domains, vastly improving work efficiency in our day-to-day activities. By ef-
fortlessly collecting vast amounts of data, IoT empowers us to analyze and understand the world around
us, opening avenues for improvement [2]. Leveraging the power of Artificial Intelligence (AI) algo-
rithms, IoT becomes more intelligent, autonomous, and adaptive [3]. This potent integration of IoT
with computer vision, Natural Language Processing (NLP), machine learning (ML), and deep learning
(DL)-based algorithms allows real-time data collection with exceptional precision. The amalgamation
of IoT systems, sensor interconnections, and AI-based algorithms enables the identification of patterns,
trends, and anomalies that might otherwise remain unnoticed, providing invaluable insights for progress.

The world is grappling with a significant challenge: an inefficient water management system [4]. In
India, the current water monitoring network, part of the National Water Quality Monitoring Programme
(NWMP), consists of 4484 stations for surface and groundwater across 28 States and 8 Union Terri-
tories, with monitoring conducted on a monthly, quarterly, half-yearly, and yearly basis [5]. Despite
Government efforts to improve the situation, there remains a pressing need for responsible water usage
from the end-users to conserve this precious resource. Freshwater scarcity is a severe issue, with many
households lacking access to this basic necessity. Although India receives about 4000 billion cubic me-
ters (BCM) of annual precipitation, only a mere 8% of the rainfall is captured [6]. Apart from concerns
regarding drinking water scarcity, the shortage of water for agricultural purposes is also on the rise [7,8].
Numerous water management systems have been proposed in the past, employing various technologies
to address the issue, but these solutions often come with high costs and energy consumption. However,
with the emergence of the IoT, the development of smart water management systems is gaining momen-
tum [9]. Real-time water monitoring systems offer promising solutions for leak prevention in pipelines,
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efficient water distribution among households, reduction of non-revenue water (NRW), water quality
assessment, and understanding water usage patterns, leading to responsible household water consump-
tion [10]. Several IoT-based water management systems are under development, some of which can
measure water levels in real-time [11], monitor water quality [12], and assess soil moisture [13]. These
advancements hold the potential to revolutionize water management, helping us conserve and utilize
this vital resource more sustainably.

Deployment of smart IoT-based water meters can make efficient management of water supply and
keep a check on water usage. These devices can help the user understand their water usage based on
which they can optimize their usage pattern and monitor consumption regularly [14], [15], [16], [17].
In particular, the thesis provides a method to make preinstalled traditional analog meters smart and use
them to monitor water usage. The work combines the ML/DL-based algorithms and computer-vision-
based techniques to make the IoT-based smart water monitoring system robust and easy to deploy. The
smart meters are designed such that they do not alter the preexisting water pipelines and easily get
retrofit on the preinstalled traditional analog meters, making them a low-cost alternative compared to
high-cost digital meters. The thesis provides a detailed understanding of the working and designing of
smart meters, which are deployed across the campus of IIIT-Hyderabad, collecting data in real time. A
huge amount of dataset was collected, which is one of its kind based on Indian analog water meters and
is rich in features. The data collected from them provides a useful understanding of water usage patterns
concerning different campus buildings.

1.2 Summary of contributions

The main contributions from this thesis are presented in the chapters mentioned as follows:

• Chapter 3

– An IoT-based sensor node is designed and deployed in field to take water meter images,
convert them into digits and send it to cloud.

– The existing meter is not physically altered as a retrofitting method is employed. It is as-
sumed that the meter fully depends on the conversion of pictures to digits and lacks any
pulse output.

– The node’s design allows it to deliver data in real time with great temporal precision (read-
ings every few seconds) and is outfitted with lighting so that readings can be taken at night.
In this manner, the data from the metres can also provide precise estimations of derived
factors like flow rate.

– The meter image’s digits are recognised using a simple ML method that can be implemented
at the node itself and requires little processing.

– The performance of the ML algorithm is further improved by using specific constraints
related to the water meters.

2



– The proposed approach is evaluated based on the data of over 10,000 images collected from
the field deployment of 10 days. The collected data will be made public for further research
in future.

Note: In this work, I was involved in refining the dataset, training the ML algorithm, making
the algorithm work on Raspberry Pi, and generating time series graph. For designing the
retrofit hardware setup, credits belong to Nilesh Bawankar.

• Chapter 4

– A DL-based algorithm is proposed, which performs more accurately than the ML algorithm
described in Chapter 3. The proposed DL algorithm is based on CNN with transfer learning.

– A rich dataset is collected using images captured from six IoT-based smart water meters de-
ployed in locations having different environmental conditions. For training, approximately
160,000 images have been used, which have been collected over 20 days. The testing data
contains approximately 80,000 images collected over 10 days in real time.

– A performance comparison against the proposed DL-based algorithm is carried out with
the ML-based algorithm proposed in Chapter 3. It is shown that the DL-based algorithm
performs better than the ML-based algorithm, even without the need for post-processing
constraints to correct the false detections. Moreover, the proposed DL algorithm is compu-
tationally light enough to be deployed on our retrofit model (on edge).

– To understand the performance improvement of the proposed DL model over the ML-based
model, the extracted features from both the models are analyzed to infer what models are
observing during detection.

• Chapter 5

– Behavioural analysis of water consumption of educational institute campus buildings.

– Huge data collection from water meters via IoT-based retrofit over an academic semester.

– Monthly and weekly analysis of the water supply patterns for student’s hostel block and
faculty/staff block having two different demand requirements.

– Analysis of variation of water supply pattern with holidays in semesters between hostel
block and faculty/staff.

1.3 Structure of thesis

The rest of this thesis is organized as follows-

• Chapter 2 gives an overview of IoT and provides information on the literature survey on smart
analog water meters.
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• Chapter 3 describes an ML-based IoT retrofit method to make analog water meters smart.

• Chapter 4 illustrates the necessity for employing a DL-based approach to accurately recognize
digits in analog water meters.

• Chapter 5 presents behavioural analysis on the water consumption data for two regions on the
IIIT-H campus.

• Chapter 6 conclude this thesis.

4



Chapter 2

An Overview on IoT

This chapter provides a comprehensive overview of IoT systems, encompassing their architecture,
applications in diverse domains, and the challenges they entail. To facilitate a deeper understanding
of IoT, the chapter delves into a four-layer architecture, outlining the fundamental steps involved in
building an IoT system.

2.1 Introduction to IoT

The Internet of Things (IoT) refers to the network of interconnected physical devices, vehicles, appli-
ances, and other objects that are embedded with sensors, software, and network connectivity, allowing
them to collect and exchange data over the internet. In simple terms, it is the concept of connecting
everyday objects to the internet, enabling them to communicate and interact with each other and with
humans. The IoT is built on the idea of enabling devices to gather and share data, which can then
be analyzed and used to make informed decisions, automate processes, and improve efficiency. These
devices can range from small, simple sensors to complex machinery, and they can be found in various
environments such as homes, offices, factories, cities, and even in wearable devices.

2.2 IoT architecture

IoT architecture refers to the structure and components that make up an IoT system. It provides a
framework for designing and implementing IoT solutions, allowing devices and applications to connect,
communicate, and share data seamlessly. The architecture typically consists of several layers and they
can vary between three to seven [18], [19], [20], [21], [22]. However, this chapter will cover an in-
depth understanding of four-layer architecture 2.1, which is comprised of 1. perception/sensor layer, 2.
processing layer, 3. network layer, and 4. cloud/platform Layer.
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Figure 2.1 A four-layer IoT architecture consisting of perception/sensor, network, processing and
cloud/platform layers.

2.2.1 Perception/sensor layer

This is the lowest layer of the architecture, consisting of physical devices such as sensors, actuators,
and controllers. These devices collect data from the environment or take actions based on commands
received from higher layers. They often have embedded processors, wireless communication capabili-
ties, and various sensors to capture data. The device layer interacts with the physical world and converts
analog signals into digital data. This layer performs the edge computation and analytics at the node
level. They play a critical role in interacting with the surrounding environment and gathering essential
information and data. This collected data serves as a valuable resource for further analysis and insights.
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A wide range of sensor types are available, each with its distinct characteristics and functionalities; for
example:

• Visual sensor: The data collected from them can be of various types like face information, digit
and text information, and various physical object information. This data can be used for smart
city surveillance [23], water meter monitoring [24] and other smart applications.

• Motion sensor: It detects movement or changes in the surrounding environment. It is commonly
used in various applications, including security systems, home automation, lighting control, and
occupancy detection. Some of the examples are IR sensors, ultrasonic sensors, accelerometers,
gyroscopes etc.

• Environmental sensors: These sensors are engineered to collect data about the surrounding envi-
ronment’s physical and chemical characteristics. For instance, DHT11 sensors excel at measuring
both temperature and humidity levels in their vicinity, while MQ135 sensors are proficient in
gauging diverse gas compositions and monitoring air quality.

2.2.2 Processing layer

They serve as the central processing unit and the core intelligence behind IoT devices. They play a
vital role in controlling and facilitating communication between the device’s sensors and actuators. With
their robust computing power, processors efficiently handle data processing tasks and facilitate seamless
transmission to the user end. The IoT landscape offers a diverse range of processors and controllers,
each boasting distinct capabilities tailored to specific requirements. For instance:

• Raspberry-pi: Raspberry Pi boards are designed to be a complete computer system on a single
board. They consist of a system-on-a-chip (SoC) that integrates a processor, memory, graphics
processing unit (GPU), and various input/output (I/O) ports. They are used in IoT for data collec-
tion, local processing, connectivity, gateway functionality, customization, and development. They
provide a versatile and affordable platform for building IoT solutions.

• Node-MCU: They are open-source firmware and development boards based on the ESP8266 Wi-
Fi module. It combines a microcontroller unit (MCU) and Wi-Fi capabilities, making it a popular
choice for Internet of Things (IoT) projects.

2.2.3 Network layer

The network layer in an IoT system plays a vital role in facilitating seamless communication between
devices. It encompasses the network architecture, gateways, and protocols that enable efficient data
transfer. This layer incorporates various technologies such as local area networks (LANs), wide area
networks (WANs), Wi-Fi, Bluetooth, and cellular networks. Its primary function is to transmit and
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process data collected by the sensor devices. The network layer establishes a foundation for higher
layers to further process and analyze the data by ensuring reliable and secure data transmission. Some
of the communication protocols commonly used in the network layer of IoT systems:

• Message Queuing Telemetry Transport (MQTT): MQTT is a lightweight publish-subscribe
messaging protocol that is designed for efficient communication in constrained environments. It
is widely used in IoT applications for its low overhead and support for reliable messaging. They
can be combined with controllers like NodeMcu [25] in order to send to user.

• Constrained Application Protocol (CoAP): CoAP is a specialized protocol designed for resource-
constrained devices and networks. It enables efficient communication between IoT devices and
is often used in applications that require low power consumption and scalability. There are some
work in literature like [26], [27] which which enables the users to select the CoAP that aligns best
with the unique needs and requirements of each application

• Hypertext Transfer Protocol (HTTP): Although primarily a protocol for web communication,
HTTP is also utilized in the IoT network layer. It allows devices to communicate using the
request-response model and is commonly used for device management, data retrieval, and control
in IoT applications.

• Long Range Wide Area Network (LoRaWAN): LoRaWAN is a low-power, wide-area network
protocol designed for long-range communication [28]. It enables devices to transmit data over
long distances with low power consumption, making it suitable for applications such as smart
cities and agriculture.

• Zigbee: Zigbee is a wireless communication protocol designed for low-power, low-data-rate ap-
plications. It is commonly used in home automation, industrial control systems, and sensor net-
works where devices need to communicate wirelessly with each other. Reader can also go through
its performance review in [29], which provides comprehensive performance analysis of both en-
crypted and unencrypted Zigbee, using specified metrics in a real-world testbed.

There are other protocols in IoT network and with new of them getting added. Each have their unique
characteristics and vary with the user requirements.

2.2.4 Cloud/Platform layer

The cloud or platform layer serves as the central processing and storage hub for IoT data. It involves
cloud-based services, edge computing, or a combination of both. Data collected from devices is sent to
the cloud/platform for storage, analysis, and processing. This layer may include data management sys-
tems, data analytics tools, and machine learning algorithms to derive insights from the collected data. It
also provides APIs and interfaces for application development and integration. The data collected from
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the IoT devices are very diverse and in large amount, thus different ways and methods are required to
analyse them. For different uses there are several cloud platforms which perform tasks like visualisation
of data, monitoring management, device management, system management etc. Cloud platforms such
as Amazon Web Services (AWS), IBM IoT, Oracle IoT cloud, ThingSpeak etc. can handle one or more
of the stated tasks. These cloud platforms have several advantages which can increase the efficiency of
the IoT system. For example:

• Scalability: Cloud platforms provide the ability to easily scale IoT systems to handle changing de-
mands and large data volumes. Resources can be dynamically adjusted to ensure optimal resource
utilization and accommodate system growth.

• Flexibility: With cloud platforms, users have the freedom to choose from a range of infrastructure
and services tailored to their specific requirements. This includes options for data storage, com-
puting power, analytics tools, and machine learning capabilities, allowing for customization and
adaptability.

• Data Storage and Analytics: The storage of data produced by IoT devices can be handled securely
and effectively by the extensive storage capabilities offered by cloud systems. Large datasets can
be processed and analysed using sophisticated analytics tools and machine learning algorithms,
which can yield insightful data that can be used to make well-informed decisions.

• Security: Cloud platforms prioritize the security of IoT data and systems. They employ multiple
layers of protection, including encryption, access control, authentication mechanisms, and data
privacy measures. Compliance with industry security standards and regular audits further ensure
a secure environment for IoT deployments.

2.3 Applications of IoT

IoT has brought the world even more closer than ever. With its elegant design and methods, it has
brought a multitude of conveniences, efficiencies, and advancements across various aspects of life. It
allows various devices to interact with each other, enabling smart homes for task automation, enhanced
security, and energy optimization. It can facilitate remote patient monitoring and personalized care
through wearables and telemedicine in hospitals. IoT-driven agriculture optimizes resources and boosts
crop yield sustainably. Transportation systems benefit from smart traffic management and efficient fleet
tracking, improving safety and reducing congestion. IoT enables personalized marketing, seamless
inventory management, and efficient supply chain operations in retail. Some of the applications are
briefly discussed below:

• Smart cities: IoT plays a pivotal role in fostering sustainable and efficient cities, and the Indian
government is actively spearheading various initiatives to leverage its potential. These initiatives
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encompass smart applications such as intelligent lighting, waste and traffic management, environ-
mental monitoring, public safety systems, and optimized energy distribution. Smart cities harness
IoT technology to elevate the overall quality of life and streamline resource management. For
instance, the implementation of smart water meters transforms traditional analog meters into dig-
ital counterparts, providing valuable data on water consumption patterns [24, 30]. Additionally,
air pollution monitoring systems [31] [32], like the National Air Quality Monitoring Program
(NAMP) and the Central Pollution Control Board (CPCB), are of utmost importance for India,
and the data they provide is accessible to the public, even at the state level [5, 33]. Leveraging
IoT-based solutions has the potential to significantly mitigate air pollution, empowering the Gov-
ernment and relevant agencies to effectively analyze the data and address the issue. Furthermore,
ongoing efforts focus on understanding particulate matter density and its impact on pollution lev-
els [34], [35]. In the realm of smart traffic management, IoT-derived traffic data can be analyzed
and utilized for intelligent signalling systems, optimizing traffic flow and ultimately reducing ac-
cidents and congestion [36]. Employing sensors and real-time data analysis for smart energy
management can greatly enhance sustainable energy practices in tourist destinations across the
country [37]. By incorporating technologies like smart street lights and energy-efficient build-
ings, India can make substantial strides in efficient energy management, catering to its diverse
and vibrant tourist spots.

• Healthcare: The healthcare sector has undergone a revolutionary transformation with the ad-
vent of IoT, leveraging advanced sensors and data analytics to enhance the quality of care and
accessibility of medical services [38], [39]. IoT has ushered in a new era of possibilities, em-
powering healthcare professionals with real-time data from wearable devices and smart sensors
to facilitate remote patient monitoring, chronic disease management, and medication adherence,
resulting in personalized care and timely interventions that reduce hospital visits and improve
patient outcomes. This is particularly crucial in countries like India, where there is a shortage of
healthcare professionals [40]. Moreover, the development of smart hospitals driven by IoT [41]
has revolutionized healthcare facilities, optimizing operations, facilitating telemedicine, and pro-
viding easier access to medical expertise. IoT’s positive impact extends to supply chain man-
agement [42], improving waste management, inventory accuracy, and timely delivery of medical
supplies. Through the integration of Electro Cardio Gram (ECG) with IoT, healthcare providers
and patients gain real-time insights into heart health, enabling better management of cardiovas-
cular conditions and early detection of potential issues [43], [44]. Nevertheless, it is crucial to
address data security, privacy, and interoperability challenges to ensure the successful and secure
integration of IoT in healthcare [45].

• Agriculture: IoT, often referred to as ”Smart Agriculture” or ”Agriculture 4.0,” has revolution-
ized the modern agricultural landscape [46]. By harnessing IoT technology, farmers and agricul-
tural professionals are empowered to make data-driven decisions, optimize resource utilization,
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boost productivity, and tackle challenges associated with sustainable farming practices. A prime
example of this is precision farming, where IoT-enabled sensors and devices are strategically de-
ployed across agricultural fields to collect real-time data on crucial parameters like soil moisture,
temperature, humidity, and nutrient levels. Utilizing this information, farmers can create precise
field maps, enabling tailored irrigation, fertilization, and pest control practices for specific areas,
thereby optimizing resource usage and minimizing waste. Additionally, IoT plays a pivotal role
in apple orchards, as evident in [47], where predictive models are employed for apple growth and
development. Moreover, IoT solutions extend to improving livestock conditions using devices
such as smart collars and tags [48]. These innovative technologies monitor the health and behav-
ior of livestock, providing valuable data on activity, location, and vital signs, which in turn aids
in early disease detection, optimization of feeding schedules, and overall improvement of animal
welfare.

• Smart homes: IoT is used in smart homes to connect and control various devices and appliances
through the internet [49]. Smart home devices, such as smart speakers, thermostats, lighting sys-
tems, security cameras, and home appliances, are equipped with IoT technology, allowing users to
remotely monitor and manage them using their smartphones or voice commands. This connectiv-
ity and automation improve convenience, energy efficiency, and security in modern households,
allowing several devices to communicate and interact with each other and with homeowners.
Many household appliances, such as refrigerators, ovens, washing machines, and robotic vac-
uum cleaners, can be IoT-enabled, offering advanced features, remote monitoring, and improved
efficiency. IoT-based security cameras, doorbell cameras, and smart locks provide enhanced se-
curity for smart homes. Homeowners can monitor their property in real-time, receive alerts for
suspicious activities, and grant access remotely to authorized individuals [50].

• Autonomous vehicles: In autonomous vehicles, IoT plays a crucial role in enabling advanced
connectivity and intelligence for safe and efficient self-driving operations. IoT sensors and de-
vices integrated into autonomous vehicles collect and process vast amounts of real-time data from
various sources, such as cameras, LiDAR, radar, GPS, and vehicle-to-vehicle (V2V) communica-
tion. This data is continuously analyzed to perceive the vehicle’s surroundings, identify obstacles,
detect pedestrians, and make split-second decisions to navigate through traffic and changing road
conditions. Additionally, IoT facilitates communication between autonomous vehicles and infras-
tructure (V2I), such as traffic lights and road signs, optimizing traffic flow and enhancing safety.
The seamless integration of IoT in autonomous vehicles ensures a comprehensive and responsive
understanding of the driving environment, allowing self-driving cars to operate efficiently, avoid
accidents, and provide a safe and convenient transportation experience [51].

• Remote triggered labs: IoT has made the science labs accessible to people from where ever they
are in the world [52–55]. Through interactive dashboard interfaces, students can now engage in
various science experiments virtually, while still adhering to real-world safety precautions that are
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crucial in a physical lab setting. This virtual experience helps maintain a high level of scientific
curiosity and interest among students who face limitations in accessing traditional science labs
due to infrastructure constraints.

2.4 Challenges

IoT brings numerous benefits, but it also faces several challenges that need to be addressed for its
widespread adoption and successful implementation [56], [57]. Some of the key challenges in IoT
include:

• Security and privacy: IoT presents a major security challenge due to the vast number of con-
nected devices, significantly expanding the potential attack surface for cybercriminals. Numerous
IoT devices lack robust security measures, rendering them susceptible to hacking and unautho-
rized entry. As a result, breaches in IoT security can lead to severe repercussions, including data
theft, privacy infringements, and even physical harm if critical systems are compromised. One of
the works in this domain can be referred to in [58], in which it provides an approach for end-to-end
encryption, protocol and dashboard security, and a proof of concept de-authentication detector.

• Scalability: As the number of connected devices grows, IoT systems must be scalable to accom-
modate the increased data flow and processing requirements. This challenge includes handling
the massive influx of data and ensuring that IoT infrastructure can support the growing number of
devices without significant performance degradation.

• Data management and analytics: IoT generates enormous amounts of data from various
sources. Managing, processing, and analyzing this data in real-time can be complex and resource-
intensive. Extracting meaningful insights from such vast datasets is essential for making informed
decisions and optimizing IoT applications.

• Power consumption and battery life: Many IoT devices operate on battery power, making
power consumption a critical concern. Balancing functionality with power efficiency is crucial to
extend the battery life of IoT devices and reduce the need for frequent replacements or recharging.

• Connectivity and network reliability: Reliable and robust connectivity is essential for IoT de-
vices to communicate effectively. In areas with poor network coverage or unreliable connections,
IoT devices may encounter difficulties in transmitting data and receiving updates.

• Ethical and social Implications: As IoT collects and processes vast amounts of data, there
are ethical considerations regarding data ownership, consent, and potential misuse of personal
information. Ensuring transparent and responsible data practices is essential to build trust in IoT
technologies. IoT is subject to various regulations and legal frameworks concerning data privacy,
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security, and compliance. Navigating these legal complexities can be challenging, especially as
IoT evolves rapidly.

• Interoperability: IoT devices and platforms often come from different manufacturers, leading
to compatibility issues and lack of standardized communication protocols. Ensuring seamless
interoperability and integration between diverse devices is crucial for IoT’s efficient and effective
operation.

Addressing these challenges requires collaboration among stakeholders, including governments,
businesses, academia, and consumers. Finding effective solutions will pave the way for a more secure,
efficient, and interconnected IoT ecosystem.

2.5 Smart water monitoring solutions

Several innovative projects have taken place in the field of smart water monitoring technologies.
These projects encompass various approaches, such as developing retrofit devices, utilizing digital me-
ters with wireless data transmission, and implementing ultrasonic-based sensors for pipeline water flow
detection.

2.5.1 Digital meters:

Digital meters utilize a variety of sensor technologies, including ultrasonic, Hall effect, electromag-
netic, and turbine-based sensors. For instance, in the study referenced as [59], magnetic hole sensors are
employed to calculate water consumption. Another example is presented in [60], detailing an ultrasonic
water meter that employs a low-power ultrasonic sensor to measure flow within pipelines. In the context
of smart home systems, [61] incorporates turbine flow sensors and ZigBee technology to transmit data,
enabling real-time consumption monitoring across different points within a building.

While the market does offer industry-standard digital meters based on these principles, they often
come with significant costs when implemented on an industrial scale. Additionally, the replacement
of existing analog water meters with these digital counterparts could result in resource wastage. For
example, electromagnetic-based digital meters start at a price point of approximately Rs. 24,000 for a
2-inch pipe [62]. Ultrasonic-based smart water meters can cost around Rs. 50,000 [63] for industrial
usage, and turbine flow meters can range from Rs. 33,000 to Rs. 80,000 [64]. Consequently, the
deployment of such digital meters on a larger scale, especially within extensive industrial settings, would
entail substantial financial investments.

Alternatively, the adoption of a smart retrofit model proves to be more cost-effective, with an esti-
mated cost of around Rs. 5,000. Furthermore, this approach offers water consumption analysis, and its
deployment does not disrupt existing pipeline infrastructure.
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2.5.2 Retrofit and IoT-based meters:

In one notable work [65], a wireless middleware solution for smart water metering is introduced.
This solution employs Smart Water Metering Middleware (SWaMM), an interoperable wireless IoT
middleware built on the Edge computing paradigm. Another remarkable development is the smart
water meter solution with energy harvesting, which relies on an induction emitter to detect the position
and movement of a metal target on the mechanical water meter’s wheel [66]. Furthermore, several
endeavours are focused on transforming existing analog utility meters into smart meters [24,67,68]. For
instance, in [67], a wireless sensor network-based water management system is proposed. The system
uses an analog water meter with a Reed switch, which provides a pulse output that is processed and
transmitted to a server using the IEEE 802.15.4 protocol. The data is visualized and monitored through
a dedicated web-based system.

In the realm of digit recognition, [68] explores a system to convert utility meter images into numeric
data using convolutional neural networks (CNNs) based on two architectures: You Only Look Once
(YOLO) [69] and LeNet [70]. A similar approach is taken in [71], where the authors address the
gas meter reading problem using a Support Vector Machine for digit recognition, resulting in complex
calculations. Meanwhile, [72] proposes a meter image capturing system (MICAPS) that utilizes a K-
Nearest Neighbor (KNN) based machine learning algorithm to predict digits from meter images.

One IoT-based smart water-meter system is discussed in [73], combined with a custom smartphone
app that offers robust water distribution management in urban areas. The system features real-time
updates, logging of complaints, dynamic leak checks at the consumer’s end, and hourly consumption
monitoring. Lastly, in the pursuit of making analog meters smart, [74] explores digit recognition meth-
ods for gas meter readings. They achieve promising results using a CNN based on the Visual Geometry
Group (VGG) architecture, achieving an end-to-end performance of 85.71%.

The thesis provides a novel method to utilize the preexisting deployed analog water meters and make
them smart by using an IoT-based retrofit model. The data collected from the retrofit model can be
used for understanding the usage pattern of water consumption. Note the novelty of the work done in
this thesis as compared to the existing literature on smart meter devices. The work in [67] assumes
pulse output and does not rely on the images of the meter as we do. The comparison in [68] is done
on 100 images, while we have evaluated over a large dataset. The work in [68] and [72] focus only
on the conversion of images to digits and do not take into account the use-case specific constraints.
Also, in both of them, there is no clarity on the sensing interval or facility to provide light in low light
times. In [74], the method implemented was not made to run at the IoT node, which becomes crucial as
computationally complex models will not be able to run at the edge.

2.6 Intermittent and continuous water supply system:

There are two major types of water distribution systems: continuous water supply (CWS) and in-
termittent water supply (IWS) [75]. CWS system is mostly adopted by the developed countries and it
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involves distributing water from a single point of source to required buildings. The pipelines in this
systems are always pressurised and so this system is capable of delivering uninterrupted and consis-
tent access to water resources for residential, commercial, or industrial purposes. This system aims to
overcome the limitations of supplying water at specific intervals or during certain hours of the day. In a
continuous water supply system, water is available 24/7 without any interruptions, ensuring a steady and
reliable flow of water to consumers. Although implementing these systems are financially exhaustive
and complex.

On the other hand in case of IWS system, as the name suggest, the water is supplied from one source
and get stored at a particular storage unit from where it gets distributed to rest of the desired locations.
The water is provided to consumers in cycles or intervals rather than being available continuously. In
this system, water is made available for specific durations, often during certain hours of the day, and is
then shut off until the next scheduled cycle. Intermittent water supply is commonly found in areas with
limited water resources, infrastructure constraints, or inadequate distribution systems and is adopted by
many developing countries [76] [77] [78].

There are literature work on high-frequency data collected using smart water meters in CWS [79],
[80] and [81]. In [80], the authors try to optimise the different stages of the urban water cycle, from
supply to distribution to customer engagement. Efforts are done to disaggregate the various end-user
events from the event stream data. The work presented in [79] tries to elucidate the over-engineered
design of Australia’s existing water distribution system by calculating the water demand rates. Although,
efforts to harness high-frequency data for IWS systems remain largely unexplored. Unlike in CWS
systems, obtaining precise information regarding water consumption at the user end is a challenging
task in IWS. Moreover, in commercial areas like colleges, schools, and institutions, where water usage
varies greatly, understanding the water distribution patterns becomes crucial to ensure sufficient water
supply when needed and prevent unnecessary wastage. Thus, there is a significant need to delve into
utilizing high-frequency data in IWS systems to enhance water management and conservation, which
can be targeted by utilising the methods discussed in this thesis.
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Chapter 3

ML-Based Smart Retrofit Solution for Digitising Analog Water Meters

This chapter introduces an IoT based economic retrofitting setup for digitising the analog water
meters to make them smart. The setup contains a Raspberry-Pi microcontroller and a Pi-camera mounted
on top of the analog water meter to take its images. The captured images are then preprocessed to
estimate readings using a ML model. The employed ML algorithm is trained on a rich dataset that
includes digits from the images of water meters captured by the hardware setup for ten days. The
readings are posted on a cloud server in real-time using Raspberry-Pi. High temporal resolution plots
of flow rate and volume are generated to derive inferences. The collected data can be used for deriving
water consumption patterns and fault detection for efficient water management.

3.1 Introduction

The conventional method of manually reading analog meters to calculate a consumption trend is
cumbersome and expensive. This approach is also incapable of effectively managing sustainable water
supplies, as it needs accurate monitoring techniques that enable the consumers to know the level of
water usage in real-time. The traditional analog water meters have a long life, and removing them for
digitization is a waste of resources. Although digital water meters are introduced in recent times and
are used in workplaces like government institutions, hospitals, they are very expensive. Also, the digital
water meter themselves do not give any inference or do not do any analytical analysis on the water
consumption patterns. A smart device for water monitoring can make users reduce their use of water to
conserve it.

In this chapter, an ML and IoT-based low-cost retrofitting of existing analog water meters is proposed
for making them smart. Specific contribution of this chapter are

1. An IoT-based sensor node is designed and deployed in field to take water meter images, convert
them into digits and send it to cloud.
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2. A retrofitting approach is used which does not temper the existing meter in any physical form. It
is assumed that the meter does not have any pulse output and relies completely on the conversion
of images to digits.

3. The designed node can provide real-time data with high temporal resolution (readings every few
secs) and is equipped with lighting to enable readings even in nights. This way the meter readings
can also give accurate estimates of derived parameters such as flow rate.

4. Simple ML algorithm is used to recognize the digits from the meter image, which requires low
processing and is implemented at the node itself.

5. The performance of the ML algorithm is further improved by using specific constraints related to
the water meters.

6. The proposed approach is evaluated based on the data of over 10,000 images collected from the
field deployment of 10 days. The collected data will be made public for further research in future.

3.2 Hardware description

3.2.1 Circuit description

Figs. 3.1(a) and 3.1(b) shows the block architecture and circuit design of the proposed model. The
model comprises a Raspberry-Pi 3B+ microcontroller [82], a Raspberry-Pi V2.1 camera module, an
LED ring for illumination and an active-high relay module to control the LED. The hardware is powered
by a Li-ion power bank which is connected to AC mains for charging. The power bank enables the
device to function without interruption, even if the primary AC power supply is unavailable temporarily.
The model is also equipped with a lighting feature, such that the readings can be obtained even at night
when there is no ambient light available. The lights are controlled using an active high relay module
to operate only when the camera captures an image. This feature helps in extending the battery life of
the model. The numeric values are extracted from the images of the water meter dial captured by the
camera. The micro-controller executes the ML-based image processing algorithm to detect the reading
on the meter. This reading is transmitted in real-time to ThingSpeak [83] using an LTE based portable
WiFi hotspot [84]. ThingSpeak is a cloud-based IoT platform for aggregating and processing data. The
POST method of the HTTP protocol is used to write data on the ThingSpeak server. This setup can sense
the reading at a high frequency (as quick as every 5 seconds), even when the flow is at its peak. Such
high-frequency information can be used to derive valuable insights about the community’s consumption
patterns and timely detection of leaks or faults.
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(a) Block architecture of the model

-

+

(b) Circuit diagram of the model

Figure 3.1 Hardware description of the proposed retrofit model

3.2.2 Retrofit structural view

Fig. 3.2 shows the structure of the developed enclosure. It is a 3D-printed multi-layer structure made
up of Poly-lactic Acid (PLA) material which offers protection against various weather conditions in
outdoor deployment. It consists of a four-layered stack which separates the various hardware component
for comfortable placement. The first layer (bottom most) consists of an LED ring for providing adequate
illumination to capture good quality images. In the second layer, the camera module is placed facing
the dial of the meter. The camera is configured at a focus of 4 cm with the maximum resolution of
3280× 2464 and pixel size of 1.12× 1.12 µm. The Raspberry-Pi microcontroller is placed at the third
layer. It is interfaced with an active high relay module using the Raspberry-Pi GPIO pins to control
LED switching. At the fourth layer (topmost), the power bank is placed. The whole setup is mounted
on top of the analog water meter without altering or tempering the analog meter in any sense. It is
important to note that the discussed water meters are ISI marked [85], a standards-compliance mark for
India’s industrial products provided by the Bureau of Indian Standards (BIS). Hence any technological
intervention made by physically altering the meters would lead to loss of standardization.
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Figure 3.2 3D structure and deployed model

Figure 3.3 Algorithmic pipeline for the proposed method. Notice that last digit of the meter is discarded
due to digit image ambiguity. Both the training and detection phases has shown. In training phase, the
ML model was trained on digit features and their corresponding labels. In the detection phase, each
segmented digit image feature is predicted using the trained ML model. (Best viewed on screen)

3.3 Dataset

With the help of the above-described hardware set up on the water meter, two separate datasets were
created—one for training the model and the other for analyzing the volume flow and its flow rate. As
explained in the hardware section, the camera position is fixed, and the orientation of the images remains
the same for all captured images. The coordinates where the meter reading was present were specified
and extracted the region of interest (RoI). The resultant RoI image is shown in Fig. 3.3(b). As shown
in Fig. 3.3(a), the meter reading is tilted towards the right side. In order to straighten the RoI with
respect to specified width and length, perspective transformation was used. The transformation matrix
is calculated from the manually selected source and destination coordinates. Using these transform
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Table 3.1 Frequency of the individual digit in the training dataset

Digit 0 1 2 3 4 5 6 7 8 9
Frequency 148 110 77 97 45 98 86 85 63 50

coefficients, warp perspective [86] was applied to get the transformed image. This step helps to form
nice rectangle-shaped contours.

As the next step, all the digits in the complete reading are segmented into individual digit images
and are stored separately as per their numerical value. This makes the dataset suitable for supervised
learning. These digit images were further used to train the ML model. The dataset consisted of digits
from 0 to 9. These digits were collected from the meter images captured using the Pi camera for 10
days, out of which 7 days data was used to analyze the water flow and the rest for training.

One of the significant advantages of the dataset is that the digits on the water meter have the same
font style. Hence there are significantly fewer variations in the orientation while capturing the digit
images. As shown in table 3.1, less numbers of individual digit images (ranging from 0 to 9) were
needed to cover all possible digit variations. So training the ML model once on this dataset could be
used for other meters also that were present on the campus. Below is the estimate of the number of digit
images extracted for the ML model training.

Most of the possible variants of the digit images that occurred inside the water meter (RoI) were
tried to be covered, i.e., since it is an analog meter, the digits are present on rolling wheels. As the water
is flowing, these wheels will rotate for the next digit to come. It can be observed from table 3.1 that
the distribution of the frequency of digits is not uniform. The primary reason for that is the dataset was
made with the help of a real-time water meter, and thus the rate at which the digits of the meter changed
was also not uniform. We also observed ambiguity in digit images (half of the previous digit and half of
the incoming digit) cause of rotating-disc type meters. Simultaneously, the images were being captured,
and such ambiguous digits were discarded for the dataset collection part.

After creating the digit dataset, water meter images were collected to study the volume flow and
its corresponding rate with which the water is flowing. For this purpose, Raspberry Pi captured meter
images for around seven days at every minute, which resulted in a total of 10,508 images. These images
were then analyzed with the algorithm’s help to get the volume flow and its corresponding flow rate.

3.4 Methodology

3.4.1 Training

The digit dataset, explained in the dataset section, was used to train a ML model to classify the given
digit image from 0 to 9. As this is a supervised learning problem in ML, a classification-based method
was used to train the model. There are several classification algorithms in this particular area. However,
a tree-based method was chosen to solve the problem at hand.
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The, Random Forest (RF) [87] classifier was used to train on the digit dataset. RF is a supervised
learning algorithm that combines multiple decision trees and is trained together with bagging. The
bagging method uses the idea that the combination of several weak learning models increases the overall
result. To explain the RF model more straightforwardly, it can be said that it combines multiple decision
trees and merges the results obtained by them to get a more accurate and stable prediction. The idea
behind choosing this particular classifier is to reduce the number of hyperparameters while training
the model. It is also one of the most used classifiers for these problems because of its simplicity and
diversity.

The training procedure follows these steps:

1. For each digit in the dataset, the digit’s Histogram of Oriented Gradients (HOG)-based features
[88] were computed, which is a two-dimensional matrix as shown in Fig. 3.3(f). This matrix
was flattened and converted to a one-dimensional feature vector with size n × 1. As the image
height and width remains the same for all the digit images, we always get a one-dimensional n×1

feature vector for each digit image. At the end of this step, we have m × n sized data matrix M

where m is the number of samples in the digit dataset.

2. In the second step, the corresponding labels were collected for each digit image in the dataset.
The label ranges from 0 to 9. After this step, we have m× 1 label vector.

3. The data matrix M was split into two parts: training and validation with the ratio 80:20, respec-
tively. This is a standard paradigm used in ML methods to test the generalization of the trained
model. The RF model is trained on training data only and tested on validation data to find the
error rate. The training data was used to train the RF model as a classification supervised learning
problem. The RF model’s input is the training data matrix M ′ (training part of M ) and the corre-
sponding label vector. The training phase is shown in Fig. 3.3(g). Finally, this trained model was
saved for further detection tasks.

3.4.2 Detection

To detect the digits of the water meter a 4-step structure is presented: i) RoI Extraction, ii) Image
Preprocessing, iii) Digit Image Segmentation, iv) Digit Recognition and Correction.

3.4.2.1 Region of interest (RoI) extraction

The specific region in the image, which consists of the digits, i.e., the object area, is manually
extracted by inputting the RoI’s coordinates in the algorithm. We have leveraged the fact that the camera
is permanently fixed in one position, and hence setting the coordinates once is sufficient to get the fixed
RoI. Notice that the last two digits of the meter reading are decimal places. The last digit was not
included in RoI, as this part is the most ambiguous and sometimes even hard for humans to detect
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the reading. Again, as mentioned in the dataset section, the perspective transformation was used to
straighten the RoI.

3.4.2.2 Image pre-processing

Recognizing the location of digits from the RoI is a challenging task. The RoI can be noisy and
blurred because of the dusty environment and presence of dew on the water meter. Hence we need to
pre-process the image beforehand to find the location of the digits. The following methods were used to
pre-process the image: i) grayscale, ii) median blur iii) adaptive thresholding.

Initially, the RGB colored image is converted to a grayscale image to reduce the complexity and
computation overhead: from a 3-dimensional pixel value (R, G, B) to a 1-dimensional value. Later on,
the grayscaled image is median blurred to smoothen out the edges. Hence, all the high-frequency com-
ponents (noise) of the image will be removed. Finally, adaptive thresholding followed by morphological
operation (dilation) was performed on the blurred images to separate desirable foreground image objects
(digits) from the background based on the difference in each region’s pixel intensities. After this step,
from Fig. 3.3(c), it can be noticed that a closed curve is successfully formed around the digits, which
will further help in determining the location of the digits.

3.4.2.3 Digit image segmentation

The preprocessed image was used to find the location of the digits in the RoI. We have used the closed
curves formed outside the digits on the water meter to determine the location. In any image, Contours
are curves or the continuous lines that join all the continuous points, having the same color or intensity,
to bound an object’s complete boundary in the image. As in our case, the curves are formed around
digits, finding them will provide the digit’s locations. The contour retrieval mode was set to retrieve
only the outer contours, so only the outermost is given, in case we have one contour enclosing another
(like concentric circles). The contour approximation method is set to remove all redundant points and
compress the contour to save memory. However, there are other contours as well in the preprocessed
image that are not formed around the digits and they are discarded based on the contour area. The
contours formed on the RoI image is shown in Fig. 3.3(d).

After image-processing and detecting the selected region, each digit present in that contour is seg-
regated and extracted. This was made possible cause the contour stores the coordinates information as
well. This process is called image segmentation, in which the image is partitioned into different regions
based on a common feature, in our case, the digits in the selected region. As each contour is formed
around digits only, the contour coordinates are sorted from left to right based on their position. Fig.
3.3(e) shows the segmented digit images. In the next step, each extracted digit image is detected using
the trained ML model.
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3.4.2.4 Digit recognition and correction

The last step of the proposed system is the recognition process for the meter-reading digit images
obtained in the previous step. The digit images that were segmented with the contour method are now
passed to the trained RF model that we created while training. The digit image features were computed
using the HOG feature extractor whose output is n× 1. As shown in Fig. 3.3(h), the RF model’s input
is one digit image feature at a time, and the output is the corresponding digit.

As the digits may be detected wrongly, two digit correction mechanisms as postprocessing are ap-
plied to the number collected after combining the predicted digits. These mechanisms are defined as
follows:

1. As this is continuous real-time chronological data, it is assumed that the current value must be
greater than or equal to the previous value. This helps to mitigate the common detection error that
occurred while detecting the digits.

2. Another assumption is made that the flow of the water can not increase suddenly by a huge
number. Leveraging this fact, the digits detected are adjusted based on the previous flow.

3.5 Results and observations

The developed model was deployed for ten days (Mar 11 - Mar 21, 2021) on a water meter at the
pump-house of IIIT-H campus. Water from this pumping station is delivered to a residential area of forty
families where it is stored in the overhead tanks. During the initial three days, the captured images were
used for training the ML model. The trained model was later used for the next seven days to collect
the flow data in real-time. The HOG-based image feature extraction was done using skimage [89]. The
orientation value was set to 9 with 8 pixels per cell and two cells per block. The RF classifier was
implemented using Scikit Learn [90], a popular python-based ML library. The criterion hyperparameter
of the RF classifier, which measures the quality of split while training was set to entropy. For all kinds
of image pre-processing, e.g., conversion to grayscale, median blurring (with window size 15), and
adaptive thresholding, the popular computer vision library OpenCV [91] was used.

Figs. 3.4(a) and 3.4(b) show the sensed meter readings and flow rate w.r.t time for the retrofitted water
meter, respectively. The time axis is plotted such that every tick marks the beginning of the day with
0000 hrs. Therefore the time elapsed between two consecutive ticks is 24 hrs. Every pumping instance
is marked by a rise in the meter reading as well as the flow rate. The meter reading remained constant,
and the flow rate remained zero for the duration when the pump was not running and, consequently, no
water was flowing. It is observed that the water was pumped four times in the period of observation. The
duration for which the water is usually pumped is significantly less when compared to the total duration
of observation. Hence, although the pumping duration is few tens of minutes for every instance, it
appears as a sudden step in the meter reading or a sharp peak in the flow rate. This is a valid observation
because the campus has an automated pumping system. The water is pumped to the residential area’s
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overhead tanks only when the tank’s levels dip below a certain threshold. The various instances of
water flow along with the duration and volume are shown in table 3.2. It is worth observing from Fig.
3.4(b) (Flow rate plot) that the flow rate does not remain constant for the entire duration of water flow;
instead, it usually keeps varying between 0.1 KL/minute and 0.2 KL/minute. It means that there is
no deterministic linear relationship between the duration and the volume of water flow. Instead, it is
governed by the entirely random demand for water. The observations of table 3.2 validate the same.

(a) Meter reading (volume of water flown) w.r.t time, assuming 0000 hrs as the start of the day on the
time axis

(b) Flow rate (KL/minute) w.r.t time, assuming 0000 hrs as the start of the day on time axis

Figure 3.4 Plots of meter reading (volume in KL) and flow rate (KL/minute) for the observation period
from 14 Mar 2021, 1525 hrs to 21 Mar 2021, 2359 hrs.
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Table 3.2 Water flow time, duration and volume during the period of observation

S.No. Start Time Stop Time Duration Volume
(dd-mm, hrs) (dd-mm, hrs) (mins) (KL)

1 15-03, 1239 15-03, 1321 42 7.5
2 17-03, 1856 17-03, 1908 12 2
3 18-03, 1544 18-03, 1606 22 3.7
4 19-03, 1654 19-03, 1708 14 2.1

Table 3.3 Digit error rate

Digit 0 1 2 3 4 5 6 7 8 9
Error Rate (%) 0.0 0.0 0.0 1.3 0.6 0.4 5.0 5.2 3.2 0.0

The proposed image processing algorithm is tested on the manually annotated test dataset as ex-
plained in Section 3.3. The trained RF model achieved a validation accuracy of 97.69%. Even though
the RF model is trained at very high accuracy, some digit recognition errors were noticed. Most recog-
nition errors occur for the digits appearing at the tenths (first digit after the decimal) place or units place
as they change most frequently. It is reasonable in the rotating-disc type meters. Images captured during
the digit change process will lead to an ambiguous situation, where half of the previous digit and half
of the incoming digit will be visible in the image. The errors due to rotating-disc issues are efficiently
resolved by the digit correction techniques discussed in Section 3.4.2.4.

Next, the proposed solution’s performance is evaluated by calculating the following three parameters.

1. Digit Error Rate (DER): It is defined as the number of times a particular digit is unrecognised by
the total number of times a particular digit appears for recognition. This parameter helps evaluate
the ability of the ML model in recognising the digit’s image correctly. The obtained DER for all
the digits is shown in table 3.3. It can be inferred that the DER is comparatively higher for digits
whose shape resembles any other digit’s shape.

2. Value Error Rate (VER): It is defined as the number of times the complete meter reading or
value is incorrectly recognised by the total number of readings recognised. A meter reading is
considered incorrectly recognised if it has one or more unrecognised individual digits. VER helps
in evaluating the performance of the applied postprocessing techniques. Since the obtained meter
values can only increase or remain unchanged, digit errors can be corrected to improve VER. The
proposed postprocessing ideas achieve a VER of 4.49%.

3. Root Mean Squared Error (RMSE): It is defined as the square-root of the average squared
difference between the actual meter reading and the reading obtained from the ML algorithm.
This parameter helps in evaluating the severity of the unrecognised meter reading. The RMSE
is calculated before and after the postprocessing to check the effectiveness of the technique. The
proposed ML algorithm achieved an RMSE of 0.0748 KL before postprocessing and 0.0361 KL
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after postprocessing. It can be inferred that the postprocessing technique has improved the RMSE.
Moreover, it is observed that the RMSE is significantly low when seen in the light of the discussed
application.

The above results and observations show that DER does not directly translate into high VER. Moreover,
the achieved VER does not lead to high errors in the analysis as most of the errors occur in at least
significant digits.
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Chapter 4

Improving Smart Water Meters using DL-based Algorithm

This chapter discusses a DL-based algorithm which is used for improving the performance of digit
detection from IoT-based smart retrofit model for analog water meters. The DL algorithm is trained on a
rich dataset of over 160,000 images collected from six water nodes deployed at locations with different
environmental conditions. A detailed comparison between the proposed DL and ML algorithm is made
based on detection accuracy, feature analysis, error analysis, and computational complexity analysis.
It is observed that compared to the ML model, the proposed DL model maintained a higher detection
accuracy and is more generalized in terms of feature extraction, which makes the algorithm robust.

4.1 Introduction

The traditional analog water meter has a simple structure, minimal power dissipation, high durability,
and high dependability. However, it still requires human effort to record meter readings manually,
which is inconvenient. In order to counter this problem, there is a need for an automated system of
data capturing, which can send the real-time detected meter readings to the cloud server. By analyzing
the data collected, smart water meters can aid in understanding water consumption patterns and leakage
detection for efficient water management. Thus it becomes essential to have a robust algorithm for meter
reading detection.

In this chapter, specific contributions are

1. A DL-based algorithm is proposed, which performs more accurately than the ML algorithm de-
scribed in [24]. The proposed DL algorithm is based on CNN with transfer learning.

2. A rich dataset is collected using images captured from six IoT-based smart water meters deployed
in locations having different environmental conditions. For training, approximately 160,000 im-
ages have been used, which have been collected over 20 days. The testing data contains approxi-
mately 80,000 images collected over 10 days in real-time.

3. A performance comparison against the proposed DL-based algorithm is carried out with the ML-
based algorithm proposed in [24]. It is shown that the DL-based algorithm performs better than
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the ML-based algorithm, even without the need for post-processing constraints to correct the false
detections. Moreover, the proposed DL algorithm is computationally light enough to be deployed
on our retrofit model (on edge).

4. To understand the performance improvement of the proposed DL model over the ML-based model
as given in [24], the extracted features from both the models are analyzed to infer what models
are observing during detection.

Hardware Description: The hardware setup is the same as described in Chapter 3. The components
and overall design used in retrofit have been kept the same, and improvements are made on the software
end.

4.2 Dataset

This section is divided into three parts. The first part demonstrates the variability in the meter images
based on the environmental factors and the need of collecting data from nodes deployed in different lo-
cations. The second part presents the dataset collected to train both (ML [24] and the proposed DL)
models. Finally, the last subsection will discuss the dataset on which the proposed DL and ML model
was tested in real time.

4.2.1 Pre-dataset collection

In a dataset was created using only one deployed water meter and the ML model showed the best digit
detection accuracy on that deployed node. However, it failed to maintain similar detection accuracy on
the other water meters of the same model deployed at different locations. This is due to environmental
factors like sunlight, moisture, etc. For instance, one of our water meters was present inside a small
warehouse, where it was exposed to minimal sunlight and external environmental factors. In contrast,
one water meter was present in the rooftop of a building, where it was exposed to direct sunlight and
other external factors. These factors will influence the illumination in the retrofit model while capturing
the image. To demonstrate this, histogram of captured images’ pixels is plotted for all the six nodes in
Fig. 2. For this, 50 images were randomly chosen from each node, and their RoI was extracted on which
the average histogram of pixels was plotted. The observations were intuitive as the average histogram of
pixels differed for all the nodes, as shown in Fig. 2, which helped us understand how the environmental
factor can influence the data collected from the IoT devices. Based on the above observations, data was
collected from all the six water meters for a month at the rate of 1 image per minute.

4.2.2 Training dataset

The data collected in first twenty days from all six nodes (approximately 160,000 images) was used
to create the dataset. The captured images were transformed by manually inputting the selected coordi-
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NODE 1 NODE 2

NODE 3 NODE 4

NODE 5 NODE 6

Figure 4.1 Histograms of pixels for the images of respective nodes are displayed here. About 50 images
were chosen randomly from each node, and their RoI was extracted on which the average histogram of
pixels was plotted. The x-axis represents the pixel intensity values in the plots, and the y-axis represents
the number of pixels having that particular intensity value. (Best viewed in color)

nates, width, and height to get the transformation matrix. This matrix was used to apply warp perspective
to get the RoI. After RoI detection, the digits were extracted by segmentation. These digits range from
0 to 9 and are saved in different folders to make a labeled dataset for supervised learning.

An ideal dataset should have all data points which are independent and identically distributed to
decrease bias in the dataset. It was noticed that only the right-most digit (see water meter image in Fig.
4.2) was used to change for the time-series data, and the other digits moved seldomly due to the low
water flow rate. This resulted in duplication of digits in the dataset. To remove duplicate images, images
were first translated into tensors made by combining the respective RGB pixels and were resized to a
pixel size of 50 to keep the comparison process computationally less expensive. These resized tensors
of the two images were compared using mean square error (MSE). The lower the MSE, closer (similar)
the images are to each other. Ideally, two images with MSE equal to 0 should be duplicates; however,
due to resizing the images to 50 pixels, there is a slight variation in the original image. Therefore, we
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Table 4.1 Frequency of the individual digit in the training dataset after preprocessing

Digit 0 1 2 3 4 5 6 7 8 9 Total
Node 1 274 75 27 42 142 195 339 57 33 103 1287
Node 2 254 505 208 329 386 658 451 382 436 481 4090
Node 3 497 551 588 226 434 743 472 403 524 726 5164
Node 4 1903 1336 1491 1871 1325 570 1002 1845 1035 703 13081
Node 5 103 134 125 76 150 130 103 144 134 131 1230
Node 6 151 31 116 154 125 156 131 103 248 215 1430
Total 3182 2632 2555 2698 2562 2452 2498 2934 2410 2359 26282

set a maximum MSE threshold of 20 (chosen based on trial and error) to find and remove the duplicate
images.

Table 4.1 gives a statistical review of the amount of individual digit data collected from all the nodes.
It can be observed that the frequency of the digits collected is not the same for all the nodes. The reason
for this is that water flow through different meters differs depending on the water usage in corresponding
regions. Because of this, more water flows through some meters than others. In some meters, water may
rarely flow resulting in large number of duplicate images, which are getting removed. Therefore, we got
different numbers of digit images from the six nodes.

4.2.3 Testing data

Both the models (ML model and the proposed DL model) were tested in real-time using the data col-
lected in the last ten days (approximately 80,000 images in total) from all the six nodes. Using this data,
both the models were compared based on various factors which will be discussed in the results section.

4.3 Methodology of proposed DL algorithm

4.3.1 Training

The problem at hand is defined as follows: Given a water meter image, extract the digit images and
recognize the digits present. To solve the problem, the training dataset defined in the section 4.2 is used.
As this is a classification-based supervised learning problem, DL based CNN algorithm is proposed to
train and classify the digit images. In recent years, CNN-based algorithms have been extensively used
in object detection and outperform image-processing-based feature extracted ML models. In our case of
water meter digit recognition, usage of CNN based model is even more favorable due to the following
conditions:

1. The trained CNN model extracts a rich feature set: scale, illumination, rotation, and translation
invariant. As the water meter digit images contain all these variations in real-time, the CNN
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Figure 4.2 Algorithmic pipeline for the DL methodology proposed. The dataset collected from different
nodes mentioned in section 4.2 is used to train the ResNet-18 model (last layer having 10 nodes) using
transfer learning mechanism. At the detection phase, preprocessing used in was used to segment the
digits from water meter image. Finally the digits are recognized using the trained CNN model. (Best
viewed in color)

features-based trained model is generalized and more robust than image-processing based ex-
tracted features.

2. DL models like CNN can leverage the capability of transfer learning which allows the knowledge
transferability of pretrained models on a huge dataset for similar tasks. Using this mechanism in
the case of water meter images helps faster and more accurate training.

The training procedure of the CNN model is as follows:
CNN model description: Although there are many CNN models available for the object detection

task, our use case required a CNN model with less computational complexity and yet is accurate enough
to perform the digit recognition task. The main reason for being computational complexity aware model
is to perform the inference on the hardware node itself. Following [92], a popular CNN model ResNet-
18 [93] was a suitable choice in terms of computational complexity and accuracy.

As evident from the name, ResNet-18 is 18 layers deep network, and the model overall contains
almost 11 million trainable parameters. Training the Resnet-18 model, where the weights are randomly
initialized, directly on the digit dataset is an extremely challenging task. To solve this problem, the
transfer learning mechanism is used. [93] has trained ResNet-18 model on a huge dataset named Ima-
geNet [94] which contains around 14 million images ranging 20000 categories. We used this pretrained
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model to further train on the digit dataset as mentioned in section 4.2.2. The final fully connected layer
of the pretrained ResNet-18 model was replaced by ten neurons to match the number of outputs of digit
recognition.

Preprocessing: As the ResNet-18 model input is of fixed size, all the digit images are first resized to
a fixed resolution of 224×224 to match the compatibility of the pretrained ResNet-18 model. Secondly,
the standard normalization (zero mean and unit standard deviation) is applied to the input image. This
step ensures that all the inputs to the CNN model follow a similar data distribution and helps converge
faster while training the network.

Training: The dataset was split into training and validation sets with 90% and 10% randomly se-
lected data points, respectively. This step helps generalize the model as it is only trained on the training
dataset and tested on the validation dataset. While training the model, instead of only training the last
fully connected layer, all the 18 layers of the ResNet-18 model were finetuned, which helped achieve
better accuracy. The model was trained for 5 epochs where it hit the convergence. The choice of opti-
mizer was Adam with a learning rate of 0.001 scheduled using a linear scheduler having gamma set to
0.1. For all the DL implementation, popular python-based framework Pytorch [95] was used.

4.3.2 Detection

To detect given water meter image, detection methods till segmentation (RoI extraction, image pre-
processing, and digit image segmentation) defined in the detection section of is used. After obtaining
the segmented digit images, the preprocessing step similar to training (image normalization and resize)
was applied to the digit images. Finally, each of the digit image is passed through the trained CNN
model to recognize the digit present between 0 to 9.

4.4 Results

This section is divided into four subsections. First subsection compares the detection accuracy of
both the ML model in and the proposed DL model (CNN with transfer learning) on the testing data
as mentioned in dataset section 4.2. Note that ML model in is the RF model with postprocessing
techniques. Second subsection comprises of analysis of features extracted by the models. The third
subsection does a detailed error analysis of both the models. Finally, the last subsection presents the
comparison of the models based on computation complexity.

4.4.1 Detection accuracy

Table 4.2 presents the detection accuracy of the trained models on the testing data. The proposed
DL model has more than 99% detection accuracy for all the nodes, whereas the detection accuracy of
the ML model fluctuates from 91% to 97% depending on the node. It is essential to notice that the ML
model gets this accuracy after some post-processing constraints as described in. However, the proposed
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DL model does not require any constraints to maintain its high accuracy of more than 99%. This, in
turn, shows that the proposed DL model is more generalized in terms of feature extraction and detection.
Thus, it can be used with multiple nodes deployed nodes in different environmental conditions. Figs.
4(a) and 4(b) show the detected meter readings by both the RF model (with constraints) and proposed
DL model of nodes 1 and 2, respectively. The time axis is set up so that every tick corresponds to the
start of the day at 0000 hrs. As a result, the interval between two consecutive ticks is 24 hours. There is
an increase in the meter reading records during every pumping event. For the period that the pump was
not on the meter reading stayed steady. It can be observed from the plots that the ML model has more
false detections than the proposed DL model. From both plots, the zoomed parts highlight the wrong
detections by the ML model. The red spikes in the plots denote the wrong detections. The error analysis
is done later in this section to show where the ML model fails to detect digits.

The accuracy of proposed DL model is above 99%; at very rare instance like in Fig. 4.3(a) at 0300
hrs on 9th January an error was observed. Here the CNN algorithm detected a tens digit 9 as 0. However,
it is worth observing that the proposed DL model performs better than the ML model (which requires
post-processing) with consistently higher accuracy on different nodes. The other four nodes also had a
similar types of graphs but not shown here for brevity.

4.4.2 Feature analysis

A comparison has been made between the features extracted by the ML model (RF-based model) and
the proposed DL model (CNN with transfer learning). The RF model trains on HOG-based features. To
analyze the HOG extracted features, the method proposed by [96] named HOGgle is used. The HOG
extracted features are inverted into the corresponding natural image to understand at a human level using
this method. This also helps to understand what exact features a HOG-based learning algorithm (RF
model in this case) has been trained on. The incorrectly detected digits by the ML model, trained on
HOG features, have been visualized. On the other hand, to analyze the CNN extracted features, the
method proposed by [97] is used. This method uses features extracted by a trained CNN model to
reconstruct their corresponding original image. It has been claimed that features extracted by a highly
accurate CNN model preserve photographically accurate information about the image and can be used
to reconstruct their original image. In our case, the CNN model’s first, third, and fifth convolution layer
outputs are used to reconstruct the digit image from a randomly generated noisy image.

In Fig. 4.4, it can be observed what exactly leads the ML model trained on HOG features to make
mistakes while detecting certain digits. For example, in the case of Fig. 4.4(a), it can be seen that the

Table 4.2 Accuracy in percentage for both models

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6
ML model 96.2 93.4 94.5 91.2 95.4 97.2
Proposed DL Model 99.2 99.5 99.4 99.3 99.6 99.2
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Figure 4.3 Meter reading (volume of water flown) w.r.t time, assuming 0000 hrs as the start of the day
on time axis

ML model is misclassifying the digit 0 as 9. It was also observed that most errors occurred for the digits
where some part of other digits had a shape influence. In contrast, the CNN model was able to detect
it correctly. In order to understand the reason behind it, we have analyzed the digit HOG features by
inverting them following the HOGgle method. It can be seen that the inverted HOG image resembles
the shape of digit 9. While there were certain cases when the CNN model misclassified the digit images,
the analysis of CNN extracted features using [97] was performed to understand the reason behind it. For
example, in the case of Fig. 4.4(c), the digit encountered was a particular case where half of the previous
digit and half of the upcoming digit (‘half digit’) were present due to the rotating-disc type meters. In
this case, both the ML and DL model misclassified the digit image. After analysis of both features
(HOG-based and CNN extracted) for this particular image, it can be observed that both resemble the
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Figure 4.4 Analysis of features extracted between HOG and CNN model. (Best viewed in color)

shape of digit 4. This was one of the primary motivations to discard the last digit of the water meter
image (i.e., the least significant digit) at the detection stage. The frequency of encountering such kind
of ‘half digits’ at the last position increases significantly compared to the rest of the digit’s position and
may lead to error-prone detection.

For all other digit locations, the CNN model’s overall error rate was significantly less even when
the water meter node’s location differed. On the other hand, in the case of the ML model, the same
cannot be said. The primary reason behind this can be inferred by the difference in richness of features
extracted between both the methods. It can also be claimed that features extracted by the CNN model
are more generalized than the HoG-based features.

4.4.3 Error rate analysis

In the error analysis, we use the same performance parameters as in , i.e., digit error rate (DER),
value error rate (VER), and root mean square error (RMSE). Table 4.3 shows the DER for all nodes
on the digits that were detected using both the models. It can be observed that the proposed DL model
has a very low DER values, whereas, ML model has a higher DER values for most of the digits. This
again proves that the proposed DL model has more generalized features than the HOG features-based
RF model. Along with DER, we also found the VER and RMSE for both the models given in table 4.4.
The maximum VER for RF model came out as 8.61% and for proposed DL model 0.62%. While the

35



Table 4.3 DER (in percentage) of both the algorithms on the nodes

Digit 0 1 2 3 4 5 6 7 8 9

Node 1
ML model 6.43 3.05 0.0 5.0 0.2 3.07 0.2 0.5 6.1 1.05
Proposed DL model 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.1

Node 2
ML model 0.0 0.78 0.0 1.41 0.19 0.65 0.15 1.47 0.5 0.0
Proposed DL model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0

Node 3
ML model 13.1 4.85 0.5 2.43 1.03 6.93 0.24 1.87 17.28 1.65
Proposed DL model 0.4 0.0 0.0 1.221 0.0 0.0 0.12 0.0 0.0 0.0

Node 4
ML model 7.69 6.66 1.73 8.22 3.46 3.33 1.73 12.21 8.82 3.09
Proposed DL model 0.0 0.0 0.86 0.0 0.0 0.0 0.0 0.0 0.0 1.13

Node 5
ML model 11.90 0.2 0.0 10.25 6.55 7.79 0.18 2.16 9.19 0.82
Proposed DL model 0.0 0.0 0.0 2.5 0.0 0.0 0.09 0.0 0.0 0.0

Node 6
ML model 0.8 0.0 1.85 0.15 2.65 0.38 0.31 0.0 0.0 0.0
Proposed DL model 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0

Table 4.4 VER and RMSE of both the algorithms on the nodes

Node ML model Proposed DL model

Node 1 VER (%) 5.53 0.44
RMSE (KL) 0.157 0.06

Node 2 VER (%) 1.81 0.2
RMSE (KL) 0.038 0.004

Node 3 VER (%) 7.83 0.6
RMSE (KL) 0.174 0.027

Node 4 VER (%) 8.61 0.62
RMSE (KL) 0.319 0.024

Node 5 VER (%) 5.61 0.4
RMSE (KL) 0.351 0.016

Node 6 VER (%) 1.81 0.4
RMSE (KL) 0.161 0.019

maximum RMSE for the ML model came out as 0.351 KL, and for the proposed DL model was 0.06
KL.

4.4.4 Complexity analysis

Table 4.5 shows the computational complexity analysis for both the models in terms of three main
parameters of computational complexity: execution memory (RAM), storage memory (ROM), and ex-
ecution time recorded during the run-time. It is observed that memory and space consumed by both
models do not have much of a difference. However, the execution time is approximately 3.5 seconds
more in the case of the proposed DL model. As the nodes take water meter images with a frequency
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of one image per minute, the slight increase in the execution time does not hinder the algorithm’s func-
tioning in any way.

Table 4.5 Complexity analysis

Memory (MB) Space (MB) Execution time (s)
ML model 250 33.2 ∼ 1

Proposed DL model 280 44.8 ∼ 4.5
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Chapter 5

Behavioral Analysis: Use Case of Two Buildings in IIIT-Hyderabad

This chapter presents an analysis of water supply behaviour on the IIIT-Hyderabad campus, focus-
ing on two distinct regions: student hostels and faculty/staff quarters. The analysis was done for data
collected in the monsoon semester of 2022, from August to November, at every minute interval. The
investigation delves into the impact of water supply patterns on a monthly and weekly basis. Notably, it
highlights how each month, with its unique characteristics such as holidays, exams, and class schedules,
influences the water supply in both regions. One key difference between the two regions is that students
reside in one, leading to significant variations in water usage based on the number of holidays. Con-
versely, the other region accommodates families, resulting in a consistent water requirement regardless
of college holidays. The findings from this analysis are crucial for understanding water distribution pat-
terns, particularly within IWS systems, with the ultimate goal of enhancing the efficiency and robustness
of water distribution. By thoroughly examining the water supply behaviour in an educational campus
and considering various factors that influence it, this work contributes to a better understanding of water
management on campus.

5.1 Deployment setup

Fig. 5.1 illustrates the meter deployment setup across the campus, which comprises two distinct
regions for analysis: the student hostel block and the faculty/staff block. Each region possesses its
own unique water storage and consumption patterns. The map provides an overview of the buildings in
each block and their corresponding water supply arrangements. Both blocks have their own borewell
and sump to store water, which is subsequently distributed to an Overhead Tank (OHT) for further
consumption. For drinking purposes, the Government supplies Manjeera water. The map also highlights
different types of water meters installed on the supply lines. In the student hostel block, only smart
retrofit meters are employed. On the other hand, the faculty/staff block uses two types of meters: digital
meters (referred to as Shenitech meters) and smart retrofit meters. Within this region, three meters are
present: two digital meters and one smart retrofit meter. One digital and one analog meter are installed
in series on the same pipeline to measure the drinking water supply from the sump to the OHT. This
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arrangement allows us to verify the functionality of IoT-based smart retrofit meters in comparison to
industry-based digital meters, and the results of this comparison are discussed in the following sections.
At the same time, an individual digital meter is utilized to measure the tap water supply. Overall, this
meter deployment setup provides valuable insights into water consumption patterns in different campus
regions and facilitates the evaluation of various metering technologies for efficient water management.
The naming convention of nodes and their respective locations are as follows:

• Node-HB1 and Node-HB2 are present in the hostel block of building A. The water measured by
these meters is used for both tap and drinking (after refinement) purposes.

• Node-HB3 is present in building B of the hostel block. The water measured by this meter is used
for both tap and drinking (after refinement) purposes.

• Node-FD1 and Node-FD2 both measures drinking water of building E, but the former is the smart
retrofit meter and the latter is the digital meter, present in the faculty and staff block.

• Node-FT3 measures tap water of building E in the faculty and staff block.

Figure 5.1 The region in blue colour denotes Hostel Blocks, containing two student hostels, and the
region shown in pink colour is for the residential block which shows water distribution for the building
in the region, namely Anand Nivas
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5.2 Data processing

The section is divided into three subsections. The first subsection will be an overview of data collec-
tion, following which in the second subsection, challenges and errors related to collected data will be
discussed and finally, in the third subsection, corrective measures taken for the errors are discussed.

5.2.1 Data collection

There were some challenges related to the data that were collected during the monsoon semester
from August 2022 to November 2022 (at every one minute), such as some missing days of data and
some delays in receiving the data. There were instances when the deployed node had to be brought back
to the lab for maintenance purposes, due to which there were instances when no data were collected
for a few days. Some days there were instances when due to heavy rain, the circuit board powering the
device got short-circuited, so the repair had to be done, leading to data loss for that period. There were
instances when some delays occurred due to poor network connectivity and power outage in sending the
data. Refer to the table 5.1 to get an overview of how many such data losses occurred. The table shows
the number of data points missing in days for each node in the respective regions for every month. Note
that the days mentioned in the table are not consecutive days but rather discrete, and an accumulation of
them is given. In the table, it can be seen that most of the missing days are in the month of October; the
main reason behind this is that many holidays occur and so students go home, thus making it difficult
to maintain the system. However, the low occupancy of students resulted in low consumption of water.
During the time of holidays, classes don’t take place, and water consumed goes even down; thus, not
collecting data at high frequency won’t affect the analysis much. Some errors that occurred during the
data collection are explained in the next sections.

5.2.2 Errors analysis

Fig. 5.2 shows the issues that occurred while capturing the images of meters. The shown four images
are some major issues that took place related to environmental factors, such as the deposition of dew
inside the glass of the meter, which usually happened when heavy rain occurred, smudge/scratches on
the meter, instances when some janitors mistakenly struck the device while cleaning the area and thus

Table 5.1 Table showing missing data points of each node in respective regions (in days).
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Figure 5.2 Issues Related to collected images.

causing issue with the orientation or resolution of the camera and small insects entering the device
causing errors in the digit detection. These issues lead to detection errors that produce abnormally high
or low output values. The wrongly detected value persists as the output until the meter is cleaned, and
the repetitive nature of the error causes a decrease in detection accuracy. It’s worth noting that these
errors result in sudden, highly significant changes in a very short period, which is not possible based on
the pipe’s capacity. Taking these logical conclusions into account, a refinement algorithm is proposed
in the following section to enhance the overall data quality.

5.2.3 Data correction

To tackle the issues with the detection, a refinement algorithm was proposed, which is based on the
concept of Hamming distance. Where Hamming distance is a metric used to measure the difference
between two strings of equal length. It specifically calculates the number of positions at which the
corresponding symbols (characters or bits) in the two strings are different, in our case it was a string of
digits. In this algorithm, a range was defined beyond which the values of the meter cannot go in the given
time frame and based on that, the detected values will be checked if it is within that range or not. The
range of the values can be dynamically changed based on the time difference between the two detected
values. So the range will be R = 10TD. In the equation, the number 10 represents the largest range for
the changing values of the meter’s digit in one minute (decided on the basis of the maximum possible
rate of water supported by the motor in the specified time interval). TD stands for the time difference
between the capturing interval of images. If there’s a delay in getting the image, the range will be
expanded based on the time difference between the initial value’s timestamp and the current received
value. So, the current detected value should be between the previous detected value and the previous
detected value plus R (the range calculated in the equation). We’ll compare the current detected value
with the values within this range by checking their individual digits, similar to how Hamming distance
checks. We’ll count how many digits are different between the current detected value and each value

41



Table 5.2 Illustration of refinement algorithm.

within the range. The value with the fewest different digits will be considered the correct value. Ideally,
this difference count will be 0, which means the current detected value is within the range. Refer to
table 5.2 to understand from an illustration.

In the illustration, the previous detection occurred at time T1. At the time T2, the current detection
took place, where one digit was wrongly detected as 1 instead of 2, while the other digits were correctly
detected. The Hamming distance between the values of these two time periods is 2, as indicated by the
two different digits highlighted in orange. The first highlighted digit is the wrongly detected value of 2 as
1, and the second highlighted digit is the difference between the detected digit 9 and the corresponding
digit in the first value of the range i.e. 5. Therefore, in this illustration, the Hamming distance is 2. As
described above, the range is set to as (PD, PD + 10TD) where PD is the previously detected value,
so the algorithm will iterate from 233255 to 233265. Thus when it reaches 233259, it will have the
least Hamming of 1, where only digits 1 and 2 will mismatch so we will consider this least Hamming
digit value. Hence our final value of the meter will be 23325.9 kL. Note that the least value at which
the least Hamming distance has come will be considered to avoid any discrepancies with other digits
having similar Hamming distance. This method provided us with more robust constraints and refinement
methods while limiting the error range to 10 in the best-case scenario at a one-minute data interval.

Using this algorithm rest of the analysis was done. To get a statistical understanding of how the
algorithm is working and how much improvement it has provided, refer to the table 5.3, which shows
the RMSE (Root Mean Squared Error) value and MAE (Maximum Absolute Error) value of the detected
DL-based algorithm and after refinement. To generate this table, approximately 4K data points were
manually annotated. The majority of the detection error occurred due to reasons stated in the previous
subsection. It’s important to note that the original DL-based model had an accuracy of approximately
99%, as mentioned in [30]. However, in this specific case, the node was well maintained for a period of
30 days and during this period little or no rain occurred. The current scenario involved capturing images
for the entire semester, which lasted around four months. These images included defects mentioned
earlier and were influenced by varying climatic conditions, such as rain. The presence of dust particles
and smudges significantly affected the image quality, especially after heavy rain, as insects would often
enter the device during that time. The detection errors would persist until the dust was cleared, but they
were repetitive in nature. For instance, when dust particles settled on the Most Significant Digit (MSD)
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Figure 5.3 Graph of detected values and refined values for node Node-HB2, plotted over four months
of data. On the X-axis timestamp is given, and on the Y-axis, meter readings in kL (Kilo Litres) is
mentioned. (Best viewed in coloured)

that rotated slowly, the same detection error would persist for a prolonged period. However, these errors
were effectively addressed by the refinement algorithm.

Table 5.3 Table showing the improvement done by the refinement algorithm.

Fig. 5.3 shows a graph for the node Node-HB2 (refer Fig. 5.1), depicting detected and refined values
over the four months of data where 3,362 data points had to be corrected by the refinement algorithm.

5.3 Result and analysis

This section is divided into four subsections. The first subsection compares the digital water meter
(Shenitech meter) with smart analog water meters. The second subsection focuses on time series data
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Figure 5.4 Time series plot for net water volume in kL. The dotted thick line shows the raw data for
each node from September 17, 2022 to October 15,2022. The solid thin lines of the same color shows
the best fit linear trend line corresponding to each node. (Best view in coloured)

analysis of all smart water meter nodes. The third subsection delves into monthly water usage analysis
for all the meters, while the fourth subsection explores weekly water usage analysis.

5.3.1 Comparison between the digital and smart retrofit meters

Table 5.4, presents a comparison between two types of meters installed on the same pipeline: the
smart retrofit meter (Node-FD1) and the off-the-shelf digital meter (Shenitech Node-FD2). Remarkably,
the values recorded by the smart retrofit meter on the analog device closely align with those obtained
from the digital meter. The primary distinction lies in the precision of the values. However, this differ-
ence becomes negligible when we round off the precision of the digital meter’s values from three digits
to one decimal place, making them similar to the readings of the smart analog meters.

Table 5.4 Table for comparison between net water volume flowing in a day for both analog and digital
meter.

44



Node Average Daily Consumption (kL/Day)
Node-HB1 98.60
Node-HB2 88.95
Node-HB3 27.52
Node-FD1 0.90

Table 5.5 Table for the Average Daily consumption for each node found using the best fitting linear
trend line.

5.3.2 Time series data

Fig. 5.4 shows the time series data collected from all the nodes for approximately a month (from 17
September 2022 to 15 October 2022). All the meter readings are plotted here by adjusting them to zero
on 17 September 2022 for ease of visualization. The thin solid line indicates the best fit linear trend
line for the plotted raw data (thick line of the same colour) for a node. It can be seen that the amount
of water used is highest for Node-HB1 and Node-HB2 followed by Node-HB3, and Node-FD1 has the
least water usage. Similar observations can also be noted from table 5.5.

Note that Nodes-HB1 and HB2 are for the same building A, where Node-HB1 is on the pipeline
between the borewell to sump and Node-HB2 is from sump to OHT. That is the reason they are almost
close to each other, except for a small difference which is because of the water storage in sumps. It can
be observed that the Nodes-HB1/HB2 and HB3 present in the hostel blocks have the highest volume of
water flowing throughout the month along with the highest slopes. Slope (kL per day). This is expected
as buildings A and B are hostel blocks with occupancy of around 800 and 425 students, respectively.
Nodes HB1 and HB2 are much higher than Node-HB3 also because building A has two messes while
building B does not have any. On the other hand, Node-FD1, responsible for supplying drinking water,
displays the lowest slope, indicating the least volume of water flowing through it. It is intriguing to
note the distinct steps in the curve, implying that the drinking water is supplied at intervals of a day or
two, from the sump to the OHT. This suggests that the water in the storage tank remains unused for an
extended period before being consumed.

5.3.3 Monthly analysis

Fig. 5.5 shows the monthly supplied water through all the nodes from the month of August to
November 2022. In order to find these values, the meter reading at the end of the month was subtracted
from the start of the month. From the graph a similar observation as to time series data can be observed,
where nodes present at the hostels are showing higher monthly consumption, compared to other nodes.
From the figure, observations made are:

• Hostel nodes-HB2 and HB3 show higher water demand for the month of September and Novem-
ber. This behaviour can be related to the high occupancy of the students because of the semester
exams conducted in that period.
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Figure 5.5 Monthly net water supply plot.

• Hostel nodes-HB2 and HB3 also show a reduced water demand in the month of October due to
the low occupancy in hostels because of several holidays in that month, when many students go
home.

• For Node-FT3 in the faculty and staff block, constant usage of tap water over the whole data can
be seen. This can be attributed to the fact that the water demand remains constant as per family’s
requirements and do not get influenced by exam or small holidays during the semester.

5.3.4 Weekly analysis

Fig. 5.6 illustrates the total volume of water supplied on a weekly basis over a span of four weeks.
Specifically, these four weeks were chosen to highlight the impact of consecutive holidays during the
third week, from 3rd October to 9th October. During this period, a considerable number of students left
the campus, leading to a decrease in active occupancy within the Hostel block. Consequently, the water
consumption and supply in this block also decreased. The figure clearly indicates a noticeable dip in
the weekly water supply for the Hostel Block nodes during the third week. In contrast, the Faculty/Staff
Block experiences only a minimal dip during the same period. This observation underscores the fact that
long holidays have a more substantial effect on the active occupancy of the Hostel block compared to
the Faculty/Staff block. The reason behind this discrepancy lies in the nature of occupancy within these
blocks. The Hostel block serves as a temporary residence for students, leading to a more significant
impact on water usage when they are away. On the other hand, the Faculty/Staff block represents a
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permanent residence for the faculty, resulting in a relatively stable occupancy even during extended
holidays.

Figure 5.6 Weekly net water supply plot over 4 weeks.

Fig. 5.7 shows average volume of the water supplied for each day of the week for different nodes
over available data in 4 months (August to November 2022). The idea behind this plot is that the average
supply over a long period would be similar to the average consumption over a long period. The figure
shows that the supply for each day of the week has little variation. Some intuitive observations made
from the plot are:

• Water usage in the hostel block nodes is lower on weekends compared to other days. This is
due to the cleaning staff of hostels having a holiday on Sunday. Students also start their day late
by spending more time resting and some students go out of the hostel accounting for the least
consumption. Conversely, water usage remains relatively consistent on the other days.

• In Node-FT3 of the faculty and staff block, water usage remains consistently stable across all
days. This can be attributed to the families residing in the building, as their water requirements
remain constant, unlike the variable needs of students.
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Figure 5.7 Week-day wise net water supply plot.
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Chapter 6

Conclusion

The thesis presents an innovative approach to transform traditional analog water meters into smart
devices using IoT-based techniques. The retrofit model leverages AI-based digit detection to extract
numerical readings from the analog meters, enabling the transmission of these values to a cloud server.
A unique and extensive dataset, specifically tailored to Indian water meters, was collected during the
study. To gather data, ten nodes were strategically deployed across the campus during the data collection
phase. Among these nodes, four were strategically placed to analyze the consumption patterns in the
hostel and faculty/staff block, which are the most densely populated buildings on campus. The deployed
devices provided valuable time series data, allowing for an in-depth exploration of monthly and weekly
consumption patterns throughout one semester. Additionally, the study investigated how consumption
patterns varied during holiday periods within the semester.

In Chapter 3 of the thesis, the retrofit model’s development is detailed, encompassing its structural
design, the equipment employed, and the algorithm utilized. For digit detection, a machine learning
model based on RF was adopted. The retrofit model was initially deployed on a single meter, serving
as the data collection source for training the ML model. Following data collection and model training,
a post-processing step was integrated into the algorithm, resulting in an impressive accuracy of 97.69%
for digit recognition.

Chapter 4 builds upon the work conducted in Chapter 3, expanding the retrofit deployment to en-
compass six meters. This extension resulted in the collection of a substantial dataset from these meters,
which was then used to train a DL model achieving over 99% accuracy. Interestingly, it was observed
that the previously trained ML model exhibited lower accuracy compared to its earlier performance. To
investigate this behaviour, a thorough analysis of the nodes’ locations was conducted. The deployed
nodes exhibited significant diversity, with some placed in dark enclosures, others in open sunlight, and
some in shaded areas. These diverse locations led to variations in the intensity of images captured by
the devices, thereby impacting the training features. To gain further insights into how the ML model
perceived the images, the concept of Hoggles was employed. Hoggles involved reverting the trained
HOG features to visualize how the ML model actually interpreted the images. In order to enhance
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the detection algorithm, a transfer learning-based ResNet-18 DL model was trained, and a comparative
analysis was carried out between the features learned by both the DL and ML models.

Chapter 5 presents a comprehensive behavioral analysis of the collected data set, focusing on the
time series data. This analysis delves into the monthly and weekly consumption patterns observed in
the hostel and faculty/staff block. Furthermore, the study examines how consumption patterns evolve in
response to holidays throughout the semester.

Future directions: Utilize the collected time series data to conduct a comprehensive analysis of
motor operation, with the goal of identifying the ideal duration for ensuring an ample water supply at
the user-end. Explore the potential benefits of adjusting the motor’s ON/OFF cycles to optimize its
long-term efficiency and overall health. Additionally, enhance the performance of the storage units
by examining water stagnation in the tanks and making necessary adjustments to the floater’s level
thresholds, thereby preventing any unnecessary water supply through the automatic water motor.
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