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Abstract

Monitoring and analyzing air quality is a challenging task without understanding influencing factors.
Conventional air pollution monitoring is limited to few locations and accessing data is difficult. Internet
of Things (IoT) provides a solution by enabling cost-efficient networks of particulate matter (PM) mon-
itoring devices that are easily connected to the internet. PM monitoring portable sensors combined with
IoT offer a more efficient and widespread PM monitoring solution, overcoming issues with bulky and
expensive traditional systems. This thesis focuses on development and deployment of PM monitoring
device and the establishment of a dense PM monitoring network.

This thesis focuses mainly on four aspects. In the first aspect, the development of an end-to-end
low-cost IoT system for a densely deployed PM monitoring network carried out an extensive field study
in a region of the Indian metropolitan city of Hyderabad. A total of 49 devices were deployed in an
area of 4 km2, with 43 of them developed specifically for this study and the remaining six obtained from
external sources, a density never realized in any metropolitan city worldwide and mostly in developing
countries like India in the past. A total of 15 devices were connected to Wi-Fi, primarily within the
campus area and wherever Wi-Fi connectivity was available, whereas 34 devices were equipped with
2G eSIM. The low-cost sensors were carefully calibrated to account for seasonal variations by utilizing
a highly precise reference sensor. Also, a robust device was made that can cache data to avoid loss due
to communication outages.

The second aspect of this thesis focuses on gathering a significant quantity of data, nearly 20.7 mil-
lion. This unique dataset offers great opportunities for future research and is examined to evaluate
whether a concentrated deployment of PM monitoring devices was necessary. Third, various analyt-
ical methods, such as mean, variance, spatial interpolation, and correlation, were utilized to produce
informative findings about the fluctuations of PM over time and across seasons. In order to understand
the impact of firecracker detonations during Diwali festival evenings, a spatio-temporal analysis of PM
values was conducted. As part of our analysis, we also tried to answer an important question concerning
decision-makers about the optimum density required for effectively monitoring street-level pollution.
For the considered scenario, we demonstrated that PM monitoring devices should be deployed at most
350m apart to accurately capture the spatial variability of PM.

Finally, this thesis examines various challenges encountered during the pre-deployment and post-
deployment of PM monitoring devices. It addresses issues such as the design of low-cost devices,
pre-deployment calibration, and seasonal calibration. Also explores challenges related to power sup-
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ply, theft, environmental factors affecting sensor performance, and hardware failures. Additionally, the
study investigates hardware reset and corrupt or redundant data. This thesis examines the challenges
that arise during the deployment of PM monitoring devices and to propose feasible solutions to mitigate
these issues, thereby offering valuable insights into the effective implementation of PM monitoring tech-
nology. Overall, the thesis highlights the importance of dense deployment and addresses the challenges
to ensure reliable and accurate data collection.
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Chapter 1

Introduction

1.1 Motivation

IoT refers to the network of physical devices, vehicles, buildings, and other items embedded with
electronics, software, sensors, and connectivity, enabling these objects to connect and exchange data.
IoT allows for the seamless integration of the physical and digital worlds, creating smart environments in
which devices can communicate and interact with one another. This creates new opportunities for busi-
nesses and individuals to improve efficiency, reduce costs, and gain insights from data. IoT has greatly
increased the amount of data generated by connected devices [1]. IoT devices collect and transmit vast
amounts of real-time data, enabling organizations to gain valuable insights and make data-driven deci-
sions in various fields such as manufacturing, healthcare, transportation, and smart cities. Overall, IoT
has greatly expanded the potential for data generation and insights. The combination of sensors and the
IoT allows for the creation of smart environments in which monitoring Air pollution is one particular
field.

Air pollution has been an issue of grave concern across the world for decades [2]. PM occurring from
local activities is a significant contributor to air pollution, which causes serious health implications. In
India, the average PM concentration is 55.8 µg/m³, 11 times higher than the WHO guideline [3]. Ac-
cording to an estimate, in 2019, around 6.7 million premature deaths globally were associated with air
pollution [4]. Studying and continuously monitoring the various patterns related to air pollution is es-
sential to address the challenge comprehensively. Many countries have established elaborate structures
for air-quality monitoring based on beta attenuation monitor (BAM) and tapered element oscillating
microbalance (TEOM) often deployed by pollution control boards and other governmental agencies to
monitor air quality [5]. Although the PM data from these stations is very accurate, this approach has
the limitation of scalability. Often the centralized AQMS are expensive, bulky and large in size [6].
Thus, they cannot be densely deployed. For example, in a big metropolitan city like Hyderabad, with a
population of over 6.7 million [7] and area over 650 km2, the Central Pollution Control Board (CPCB)
and the Telangana State Pollution Control Board (TSPCB) have deployed only 12 AQMS [8]. All of this
points out the issue of the expensive and time-consuming setup of the air quality monitoring apparatus
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and a significant mismatch between the requirement of PM data and its availability. Consequently, the
resolution of available air quality data is limited as very few stations are typically responsible for an
entire city region. Low resolution is not enough for a deeper understanding of PM as the pollutant levels
can vary drastically even within smaller blocks in a city [9].

Citywide deployment of such devices has been studied to increase pollution data’s spatial-temporal
resolution [10, 11, 12, 13], but there is a lack of literature on densely deployed low-cost PM monitoring
IoT network. This is the primary motivation for this work. To overcome the limitation of scalability,
this thesis focuses on the development and deployment of low-cost sensor-based monitoring nodes with
the fine spatiotemporal resolution, localized monitoring, and real-time analysis of outdoor PM. A thor-
ough analysis of data collected for seven months has been presented to establish the need for dense
deployment of PM monitoring devices.

1.2 Summary of Contributions

The main contributions from this thesis are presented in the chapters mentioned as follows -

• Chapter 4

– For the high spatial resolution of outdoor PM, 49 IoT-based PM monitoring devices have
been developed, calibrated and deployed at various outdoor locations.

– The developed device is designed to be robust against the issue of data loss due to connection
and power outages. The device maintains an offline cache in the event of an outage. The
stored data is offloaded in bulk once the power and communication are restored.

– All PM sensors were calibrated for seasonal variations by co-locating with a reference sen-
sor. Also, each device was calibrated individually.

– The devices were deployed at 49 outdoor locations covering a 4 km2 area in Gachibowli,
Hyderabad, India. The field locations were selected to include urban, semi-urban, and green
regions. Few devices were deployed at busy traffic junctions and roadsides. The data were
recorded at a frequency of every 30 seconds (sec) spanning over all the seasons for seven
months, thus aggregating 20.7 million data points.

– Different analyses were carried out by observing seasonal mean and variance, spatial in-
terpolation, event-driven variation and correlation. Results show the optimal deployment
across a varied landscape and can be a key factor in identifying the release of high concen-
tration of PM in real-time.
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• Chapter 5

– We highlighted the challenges and issues encountered during and after deployment of PM
monitoring devices, which may be helpful for on-field researchers and readers.

– A novel approach was proposed that can estimate the Air Quality Index (AQI) without using
any PM sensors, by utilizing machine learning and traffic data, which can help to avoid the
hassle associated with sensor usage.

Note: This particular setup dataset has been used for training the algorithm that can estimate the
AQI by using machine learning and traffic data and without using PM sensors. Its training and
result is not discussed in this dissertation. Credits belong to Nitin Nilesh.

1.3 Structure of Thesis

The rest of this thesis is organized as follows-

• Chapter 2 briefly introduces IoT, its applications, and the challenges involved.

• Chapter 3 gives an overview of the literature survey on low-cost air pollution monitoring and the
current state of IoT monitoring networks for air pollution.

• Chapter 4 describes the dense air pollution monitoring IoT network developed and deployed
in 4 km2 area in Gachibowli Hyderabad. The description includes the hardware development &
deployment of the sensor nodes, calibration of the PM sensor, Indian dataset collection for more
than one year as well as the spatiotemporal analysis of the dataset.

• Chapter 5 presents the challenges faced during deployment and maintenance.

• Chapter 6 conclude this thesis.
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Chapter 2

An Overview on IoT

This chapter provides an overview of IoT. It is followed by a summary of IoT components. Following
that, IoT applications and use cases are addressed. Finally, the key issues confronting IoT are discussed.
This chapter only provides a brief overview of IoT; interested readers may learn more about IoT in
numerous books, including as [1, 14, 15, 16, 17].

2.1 Definition of IoT

IoT is a network of physical devices, vehicles, buildings, and other objects that are embedded with
sensors, software, and connectivity which enables these objects to collect and exchange data. Two
definitions of IoT are mentioned as follows-

• Gartner Research [18] defines it as the network of physical objects that contain embedded technol-
ogy to communicate and sense or interact with their internal states or the external environment.

• United Nations International Telecommunication Union [19] defines it as a global infrastructure
for the information society, enabling advanced services by interconnecting (physical and virtual)
things based on existing and evolving interoperable information and communication technologies.

The IoT allows for the seamless communication and integration of these devices, resulting in the
ability to monitor, control, and automate various systems and processes. IoT devices are connected to
the Internet, and this allows for real-time data collection, monitoring, and analysis. This also enables
remote access and control of the device. IoT is used in many industries like smart homes, healthcare,
agriculture, automotive, manufacturing, and many more.

IoT can be represented as a network of connected devices. Fig. 2.1 shows an illustration of devices
connected representing an IoT network. These networks are now commonly found in smart homes,
factories, and other automation-based industries. IoT allows us to link computational, mechanical, and
virtual devices by allowing them to share data over the internet or another form of communication.
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Internet
of

Things

Figure 2.1: Illustration of connected devices to the internet

2.2 Architecture

The components of IoT architecture are critical for the functioning of IoT systems. Few of the
IoT models are mentioned in [20]. There are a few models that consider five layers, and there are
several others that include four or three stages for an IoT project. Fig. 2.2 shows the architecture
of the IoT system having four layers [21]. They include sensors and actuators that collect data from
the environment, a gateway that facilitates communication between devices and the internet, and a
cloud/data server that stores and processes large amounts of data. Lastly, the user interface allows users
to interact with the system and access the data. These components work together to create a seamless
and integrated IoT system that can collect, transmit, and process data for smart systems and applications.
The components of IoT architecture are briefly mentioned below:

2.2.1 Sensing and Actuator

Sensors and actuators are crucial components of the IoT architecture as they are responsible for
collecting data from the environment. These sensors such as temperature, humidity, light, or motion
sensors, can be equipped with various technologies and they can collect data in real-time. The data col-
lected by these sensors is then transmitted to other components of the IoT system, such as the gateway,
cloud server, or application layer, for further processing and analysis. The data collected by these sen-
sors play a key role in enabling the creation of smart systems and applications as it provides the raw data
that is used to make decisions and automate processes [22] [23]. Apart from having the sensors, nodes
may have a feedback system and contain actuators that react based on the input received by the device
from the sensors. Sensors and actuators come in various shapes and sizes, ranging from small wearable
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IoT Gateway Cloud User Interface

Figure 2.2: IoT architecture

devices to large industrial sensors. They can be connected to the internet via Wi-Fi, Ethernet, or cellular
networks, allowing for real-time data transmission. They are also designed to be low-power and energy-
efficient, allowing for longer battery life and less maintenance. Sensor and actuator-based IoT systems
may either be standalone (as exemplified) or integrated by a pipeline following an automation cycle of
sense → analyze → actuate.

2.2.2 Gateway

The gateway is a critical component of the IoT architecture that facilitates communication between
devices and the Internet. It acts as a bridge between the devices and the cloud, allowing for data trans-
mission and ensuring seamless communication between the different components of the IoT system.
The gateway collects data from the sensors and devices and transmits it to the cloud for storage and
analysis.

The gateway can be a standalone device or integrated into other devices, such as smart home hubs or
industrial control systems. It can be connected to the internet via Wi-Fi, Ethernet, or cellular networks,
allowing for real-time data transmission [23]. It also serves as a security layer, providing encryption
and authentication to ensure secure communication between devices and the internet. In addition to its
role as a communication facilitator, the gateway can also perform local data processing and analysis.
This enables the IoT system to make real-time decisions and take action, reducing the need for data
transmission to the cloud and reducing the overall system latency.

2.2.3 Cloud/Data Server

The cloud or data server is a critical component of the IoT architecture as it stores and processes
large amounts of data. It acts as the central repository for all data collected by the sensors and devices,
allowing for data analysis and decision-making. The cloud server can be a public or private cloud, or it
can be a dedicated data center [24] [25] [26].

The cloud server is responsible for storing and managing the vast amounts of data that IoT devices
and systems generate. This data can be used for various purposes such as real-time monitoring, predic-
tive maintenance, or customer behavior analysis. With the growth of IoT, the demand for cloud storage
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Figure 2.3: ThingSpeak User Interface

and processing capacity has increased dramatically, leading to the development of highly scalable and
secure cloud infrastructure. In addition to data storage, the cloud server performs complex data analysis
and processing. This can include data mining, machine learning, or artificial intelligence algorithms.
These algorithms can be used to identify patterns in data, make predictions, or automate processes.

2.2.4 User Interface

The user interface is an important component of the IoT architecture, providing a way for users to
interact with the system and access data. The user interface can be web- or mobile-based, allowing users
to access and interact with IoT data from anywhere, at any time. It provides a graphical and user-friendly
interface for accessing and interacting with IoT data, making it easy for users to understand and use. It
can include dashboards, visualizations, and reporting tools that allow users to view and analyze data in
a variety of formats, such as charts, graphs, and tables.

In addition to data visualization, the user interface provides functionality for controlling IoT devices.
This can include controlling device settings, scheduling actions, and receiving notifications and alerts.
Throughout this dissertation, ThingSpeak and AirIoT was used as one of the interfaces. As shown in
the screenshot in Fig. 2.3, Thingspeak offers an easy way to track devices in real-time, with the ability
to monitor data patterns and perform mathematical operations on the time-series data produced by IoT
devices.

The user interface must be designed to be intuitive and user-friendly, with clear and concise informa-
tion presented in an easy-to-understand format. It should also be responsive and adaptable to different
devices and screen sizes, allowing users to access and interact with IoT data from a variety of devices.
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2.3 Applications

The introduction of IoT has expanded the potential of multiple industries, representing a significant
technological advancement due to its ability to store vast amounts of sensor data and perform edge
computing - a feature absent in previous products and devices. Various innovative developments have
emerged in global industries with examples including healthcare, wearables, automotive, and more,
summarized briefly below with detailed information available in the provided sources for interested
readers [27, 28, 29, 30, 31, 32, 33, 34, 35, 36].

• Smart cities: The main idea behind smart cities is to improve the lifestyle and address the prob-
lems related to pollution, traffic, logistics, education, public transport, etc., for sustainable devel-
opment. The term “smart” refers to an intelligent system that can make its own decision up to a
certain extent without any manual intervention. For example, a traffic light adjusts the duration
of red and green signals in real-time according to the vehicle density at the junctions. The smart
Heating Ventilation and Air Conditioning (HVAC) systems in smart buildings ensure good venti-
lation. In 2015, the Government of India launched the Smart City Mission to improve the existing
infrastructure and enhance the efficiency of systems for the public’s benefit by leveraging tech-
nology. The mission aimed to develop one hundred cities across India as smart cities. In line with
this, the IIIT (International Institute of Information Technology) Campus in Hyderabad adopted
the smart city approach and created a Living Lab within its premises to promote sustainable de-
velopment across three value domains - social, economic, and environmental. This initiative aims
to establish a livable and renewable urban center in Hyderabad through the implementation of var-
ious smart technologies, including air pollution monitoring, smart street lamps, water monitoring,
smart public transport and more.

• Smart homes: Automating and controlling lighting, heating, cooling, and other household appli-
ances with smart devices. Smart homes use IoT technology to automate and control household
appliances like lighting, heating, and cooling. This is achieved through the use of smart devices
that are connected to the internet and can be controlled remotely. The goal of a smart home is to
make household tasks more convenient and efficient, reducing energy consumption and increas-
ing comfort for the occupants. Overall, smart homes represent a step forward in home automation
and technology integration in daily life.

• Healthcare: Monitoring and tracking vital signs, medicine intake, and other health-related data
to improve patient care and health outcomes. The healthcare industry is one of the areas that
has greatly benefited from the application of IoT. IoT-based solutions in healthcare allow for the
monitoring and tracking of vital signs, medicine intake, and other health-related data. This helps
healthcare professionals to better understand the health status of their patients and improve patient
care. IoT devices such as wearable fitness trackers, smart pills, and remote patient monitoring
systems have made it easier for healthcare providers to access critical information about their
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patients, leading to better health outcomes. With IoT, patients can also be better managed and
cared for in their own homes, reducing the need for hospital visits and lowering healthcare costs.
IoT has the potential to revolutionize the healthcare industry and change the way we approach
healthcare delivery.

• Agriculture: Using sensors and devices to monitor soil moisture, temperature, and other envi-
ronmental conditions to optimize crop yields. Agriculture is another industry that has seen the
benefits of IoT implementation. IoT devices and sensors are used to monitor soil moisture, tem-
perature, and other environmental conditions that are critical to crop growth. By collecting this
data, farmers can make informed decisions about when to plant and harvest crops, how much
water to use, and what fertilizer to apply. This leads to improved crop yields, reduced waste, and
increased efficiency in agriculture. IoT also allows for precision agriculture, where specific areas
of a field can be targeted for different treatments based on the data collected by the sensors. In
addition, IoT devices can also monitor animal health, reducing the spread of disease and improv-
ing the overall health of livestock. The use of IoT in agriculture is expected to have a significant
impact on food production and global food security.

• Manufacturing: Manufacturing is another industry that is embracing IoT. IoT technology is
being used to improve production processes by enabling real-time monitoring and control of ma-
chinery, tools, and other industrial equipment. This allows manufacturers to quickly identify and
resolve any problems, reducing downtime and improving efficiency. In addition, IoT-enabled ma-
chinery can collect and transmit data on usage and performance, enabling predictive maintenance
and reducing the need for costly repairs. Furthermore, IoT can also provide real-time monitoring
of production lines, enabling manufacturers to track inventory and make more informed decisions
about production. By implementing IoT, manufacturers can improve the overall efficiency of their
operations and remain competitive in a rapidly evolving industry.

• Energy management: Energy management is an important application of IoT. IoT technology
is used to monitor and control energy usage and distribution, aiming to optimize energy usage
and reduce waste. By integrating sensors and devices into the energy grid, energy providers
can gain real-time insight into energy usage patterns and adjust energy distribution accordingly.
This enables providers to more effectively balance supply and demand more effectively, reducing
the need for energy generation and ultimately lowering costs. Additionally, IoT-enabled energy
management systems can also automate energy-saving processes, such as turning off lights and
appliances when they are not in use, reducing energy waste. Through these applications, IoT is
helping to make energy management more efficient and sustainable.

• Environmental monitoring: Environmental monitoring involves using IoT devices to gather
data on various environmental factors like air quality, water quality, etc. This helps in tracking
the changes in the environment and taking necessary measures to manage it effectively. The col-
lected data can also be used for research and analysis to develop new strategies for environmental
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conservation. The goal is to understand the environment better and work towards preserving it for
future generations.

2.4 Challenges

We have discussed several applications of IoT in the previous section. But, IoT is a relatively new
research area and suffers from a few challenges that must be addressed to utilize the resources best. A
few of such challenges are discussed below -

• Reliability of sensors: Reliability is a key challenge in the implementation of IoT. As discussed
in previous sections, IoT systems that rely on small, low-cost devices are not ideal substitutes
for high-quality instruments. Low-cost, small IoT sensors have limitations that make it difficult
to achieve high data density. The low-cost devices suffer from certain inaccuracies that need to
be considered before deployment and they need frequent calibration to maintain accuracy due
to sensitivity to environmental conditions. This frequent calibration requirement poses a major
challenge to the reliability of the collected data. Additionally, the high failure rate of low-cost
sensors further exacerbates the challenges.

• Development Cost: The cost of implementing an IoT solution can be a major challenge as it
requires investment in devices, infrastructure, and technology. The cost of devices such as sensors,
actuators, and other hardware components can add up, especially when deploying a large-scale
solution. The cost of setting up and maintaining the infrastructure to support these devices, such
as servers, cloud storage, and networking equipment, also adds to the overall cost. Companies
may have to find cost-effective alternatives or opt for a gradual roll-out of IoT devices to achieve
cost-effectiveness.

• Power management: Power management is a significant challenge in IoT as the devices need
to function for extended periods without requiring frequent battery replacements or power source
changes. Long battery life is crucial for IoT devices, often deployed in remote or hard-to-reach
locations. Power efficiency is also important as it helps to minimize energy consumption and
reduce costs associated with frequent battery replacements or maintenance. IoT devices must be
designed to minimize power consumption through the use of low-power microcontrollers, low-
power communication protocols, and efficient power management strategies.

• Interoperability: Interoperability is a crucial aspect of IoT as it involves the seamless integration
of devices from different manufacturers. A lack of interoperability can result in a fragmented
system that fails to provide a unified solution. Communication protocols and data formats must
be standardized to achieve interoperability. This is essential for ensuring compatibility between
devices and enabling them to work together smoothly. Interoperability is also important for ensur-
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ing that users can add new devices to their existing systems without facing compatibility issues.
In short, interoperability is vital for the smooth functioning and growth of the IoT ecosystem.

• Scalability: Scalability is a major challenge in the growth of the IoT ecosystem. As the number of
IoT devices increases, the system must be able to handle the rising number of connected devices
and the growing volume of data they produce. The architecture of the system must be able to
support a large number of devices and the processing of vast amounts of data, while also ensuring
that performance is not compromised. To achieve scalability, the system must have the ability to
distribute processing power, storage capacity, and network bandwidth as needed, and to integrate
new devices and services as they come online seamlessly. This requires a flexible, modular, and
scalable infrastructure that can be easily adapted to meet changing demands and challenges.

• Security: In earlier sections of Chapter 2, it was noted that standard protocols like Wi-Fi and BLE
are integrated into small, low-end MCUs. However, these chips may not implement the protocols
with all their features, making the data sensed by IoT nodes vulnerable. Outdated encryption
methods used by low-end chips can pose a privacy issue at the device level, as they may be less
secure and easier to hack. Manufacturers prioritize cost and efficiency over advanced encryption
methods, which can result in compromised security. There are also security concerns regarding
transferring data from the gateway to the cloud securely. While cloud providers like Amazon,
Google, and Microsoft offer secure cloud services, low-end devices still have a long way to go in
terms of addressing privacy and security concerns.

• Privacy: Privacy is a major concern for many users in the context of IoT. The vast amounts of
data generated by IoT devices can include sensitive personal information, such as location data, fi-
nancial transactions, and health records. To protect privacy, it is important to ensure that personal
data is collected, stored, and used ethically and in compliance with privacy laws and regulations.
This requires secure data storage, encrypted communication, and strict access controls to ensure
that only authorized individuals can access personal data. Privacy is a complex issue that requires
a multi-faceted approach, involving technical, legal, and policy-related solutions. Ensuring pri-
vacy in the context of IoT requires a commitment from all stakeholders to prioritize privacy and
ensure that it is protected in a way that is consistent with users’ expectations and rights.

• Integration with legacy systems: Integrating IoT solutions with legacy systems can pose a chal-
lenge, as the integration process often involves significant effort and resources. The compatibility
of the new technology with the older systems needs to be thoroughly checked and tested. It can
also be challenging to find the right personnel with the required technical expertise to manage the
integration process. In order to ensure seamless integration, a well-planned strategy is crucial.
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Chapter 3

Overview of Air Pollution Monitoring Networks

This chapter briefly outlines the reason for working on dense air pollution monitoring. A complete
literature study of previous approaches and traditional monitoring sensor networks, low-cost sensors for
air pollution monitoring, and a thorough survey of various current IoT air pollution monitoring networks
worldwide are briefly covered.

3.1 Motivation

The importance of addressing air pollution cannot be overstated, as it poses a serious threat to the
health and well-being of individuals of all ages, as cited in [4]. PM is a particularly dangerous air
pollutant, capable of causing respiratory and heart related illnesses and even premature death, especially
for those exposed to it over long periods, as stated in [37]. Rapid and unplanned urbanization has led
to increased air pollution, particularly in developing nations with high population and traffic density,
where vegetation is being degraded, and metropolitan areas lack proper ventilation, putting residents at
risk, as discussed in [38]. To combat this issue, monitoring air quality and taking appropriate action are
critical. The present thesis aims at dense PM monitoring IoT networks and evaluates the effectiveness
of dense deployment of low-cost PM sensors.

3.2 World Initiatives for Air Pollution Monitoring

There are several global initiatives aimed at improving air pollution monitoring and control. Some
of these initiatives include:

• National Clean Air Programme: In India, the Central Government launched National Clean
Air Programme (NCAP) [39] as a long-term, time-bound, national-level strategy to tackle the air
pollution problem across the country in a comprehensive manner with targets to achieve a 20%
to 30% reduction in PM concentrations by 2024. The air quality of cities is monitored by State
Pollution Control Boards, which publish their results from time to time.
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• World Health Organization (WHO) Air Quality Guidelines: The WHO provides guidelines
on air quality standards and health effects, and promotes the development of air quality monitoring
networks to ensure that these standards are met [40].

• United Nations Environment Programme (UNEP): UNEP works with governments and other
organizations to promote sustainable practices and to mitigate the impacts of air pollution. This
includes the development of air pollution monitoring networks and the use of technology, such as
IoT devices, to improve air quality monitoring and control [41].

• European Environment Agency (EEA): The EEA is a European Union agency that provides
information and support on environmental issues, including air pollution. The EEA operates an
air quality monitoring network across Europe and provides regular reports on air quality and
health impacts [42].

• US Environmental Protection Agency (EPA): The EPA is the lead agency in the United States
for the protection of human health and the environment. The EPA operates an air quality moni-
toring network across the country and provides regular reports on air quality and health impacts
[43].

• Asian Development Bank (ADB): The ADB works to improve the quality of life in Asia and
the Pacific region by reducing poverty and promoting sustainable economic growth. One of the
ADB’s priorities is to mitigate the impacts of air pollution, including through the development of
air pollution monitoring networks and the use of technology, such as IoT devices, to improve air
quality monitoring and control [44].

These initiatives demonstrate the global commitment to improving air quality and mitigating the
impacts of air pollution and highlight the importance of air pollution monitoring and control in
achieving these goals.

3.3 Related Work

Many initiatives have been made across the world to detect air pollution. To evaluate air quality,
the studies include static, mobile, and current image processing-based solutions. The subsections that
follow address a few pertinent techniques.

3.3.1 Stationary Networks

Many countries have established elaborate structures for air-quality monitoring based on BAM and
TEOM often deployed by pollution control boards and other governmental agencies to monitor air
quality [5]. Although the PM data from these stations is very accurate, this approach has the limitation
of scalability.
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Figure 3.1: CPCB monitoring stations under NAMP

The high spatial variance of PM concentration has been demonstrated in previous studies, indicating
that it can vary within a few meters [45]. Various low-cost IoT-based solutions have emerged to mitigate
this issue, which enhances the spatial resolution of PM data by utilizing hardware devices that can be
installed on poles, walls, traffic lights, etc. Few of the network are CPCB, London Air Quality Network
(LAQN) [46], CitySense [47], AirBox [48].

In India, CPCB in India is responsible for regulating air and water pollution. To carry out this role,
they have established the National Air Monitoring Programme (NAMP), which focuses on regularly
monitoring three specific pollutants: sulfur dioxide, nitrogen dioxide, and PM. The CPCB also con-
siders meteorological factors such as temperature, humidity, wind speed and direction, in addition to
pollutants, in their monitoring efforts. They work in collaboration with other entities such as State
Pollution Control Boards, Pollution Control Committees, and the National Environmental Engineering
Research Institute in Nagpur to ensure consistent and uniform data on air quality. CPCB provides tech-
nical and financial support to operate the 804 monitoring stations located in 344 cities/towns across 28
states and 6 union territories as shown in Fig. 3.1.

In LAQN [46], the network comprises 33 monitoring units located throughout London City. In
addition, data from a few more nodes deployed by local authorities are also included in the network.
This information is publicly accessible and can be viewed in real-time on the website.
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The citysense [47] project aims to build a wireless sensor network that covers the urban area of
Cambridge. The network includes air quality monitoring sensors and is made up of a total of 100
Linux-based PCs that are placed at various locations such as streetlamp posts and poles. The nodes are
equipped with radios that function as a mesh network. The data collected by the sensors is continuously
transmitted to servers and made available to the public through a web application.

In Taiwan [48], local communities have volunteered to install 438 AirBox low-cost PM2.5 sensors of
various types over most of the highly urbanized parts of the study area. Similarly, in Los Angeles, [49]
361 devices were placed at various traffic and industrial locations. They developed a machine learning
model integrating spatially dense measurements from a low-cost air sensor network, highly resolved
traffic data, and a suite of spatiotemporal variables to estimate hourly intra-urban PM2.5 distribution
patterns in Los Angeles.

3.3.2 Mobile Sensing Systems

In mobile sensing system/networks, the hardware devices are small and portable. They can be easily
carried from one place to another and have wireless interfaces such as Wi-Fi, BLE, and 4G. The data
collected from these devices can be transferred to the cloud through a smartphone. There are two types
of these networks: community-based monitoring networks as shown in Fig. 3.2, in which the devices
are given to the public, researchers, and professionals to carry around, and Vehicle-based Sensing (VSN)
systems, in which the sensors are carried on public transportation vehicles. The devices used in these
networks can be easily carried and have a form factor like a smartphone. They are equipped with
wireless interfaces and protocols to connect to a smartphone. The data collected is then transferred to
a central server. The benefits of these systems include accurate and reliable data, high mobility, and
low cost. However, there are also challenges such as uncontrolled mobility, redundant sampling, and a
trade-off between spatial and temporal resolution. Examples of these networks include City Scanner,
Google Street View vehicles, and MegaSense.

City Scanner [50] is a cost-effective way to gather a large amount of information about various
aspects of a city using a modular sensing system that is mounted on top of garbage trucks. This system
operates within a centralized IoT framework, allowing for near real-time visualization of collected data.
During a real-world trial in Cambridge, Massachusetts, data was collected by a drive-by approach for
eight months and then sent to the cloud for processing and analysis. This application demonstrates the
potential of using various non-dedicated vehicles to optimize data collection in urban areas, both in
terms of the amount and quality of data gathered over time and space.

Google [51] has fitted its Street View vehicles with a fast-acting air pollution measurement system
and has taken readings on every street in a 30-square-kilometer area of Oakland, California. This has
resulted in the largest collection of urban air quality data of its kind. The maps produced show the
annual levels of NO, NO2, and black carbon at a 30-meter resolution and reveal consistent, long-lasting
pollution patterns with striking small-scale variations due to local sources. These variations can be up
to five to eight times higher within individual city blocks. Given that local differences in air quality
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(a) Google car (VSN) (b) Megasense (Mobile)

Figure 3.2: Mobile sensing device.

significantly impact public health and environmental justice, these findings have important implications
for how air pollution is measured and managed.

The MegaSense [52] gadget is a component of the Helsinki Open Source Environmental Project
(HOPE) aimed at monitoring air quality with public participation. It is a small, battery-powered device
equipped with sensors, which individuals can carry to the places they visit daily. An Android app allows
real-time air quality monitoring, and the data collected is sent to servers for further analysis, resulting
in the creation of a district-level map of pollution data based on contributions from multiple users.

All these air pollution monitoring systems claim to have a better spatial and temporal resolution than
conventional systems, but there have not been any comparisons made among them regarding real-time
performance, spatial and temporal resolution, and quality of service. In the Indian context, there is
a lack of this type of dense deployment and data to show better spatial and temporal resolution than
conventional systems. This is an area for future research.
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Chapter 4

Development of End-to-End Low-Cost IoT System for Densely Deployed

PM Monitoring Network

This chapter involved the development and deployment of 49 PM monitoring devices in a specific
area of Hyderabad, a metropolitan city in India. The collected data was analyzed over a period of seven
months, providing evidence for the necessity of dense PM monitoring device deployment. Various tech-
niques, including mean and variance calculation, spatial interpolation, and correlation, were utilized to
gain insights into temporal and seasonal variations of PM. Furthermore, an event-driven spatio-temporal
analysis was conducted to examine the effects of firecracker bursting during the Diwali festival evening
on PM levels.

4.1 Introduction

A dense IoT system with low-cost portable sensors is required to monitor outdoor PM in real time.
Currently, due to the limited deployment of devices, there is limited coverage in a large metropolitan
city like Hyderabad. Only 12 devices have been deployed by CPCB, covering a 650 km2 area. The
sparse deployment also results in a lack of pollution data in places of personal interest to the public,
such as residential areas, offices, and schools. To address this issue, we have deployed low-cost IoT
networks for monitoring air pollution to understand local pollution more deeply.

The specific contributions of this thesis are:

1. For the high spatial resolution of outdoor PM, 49 IoT-based PM monitoring devices were devel-
oped, calibrated, and deployed at various outdoor locations.

2. The developed device is designed to be robust against the issue of data loss due to connection and
power outages. The device maintains an offline cache in the event of an outage. The stored data
is offloaded in bulk once the power and communication are restored.

3. All PM sensors were calibrated for seasonal variations by co-locating with a reference sensor.
Also, each device was calibrated individually.
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4. The devices were deployed at 49 outdoor locations covering a 4 km2 area in Gachibowli, Hyder-
abad, India. The field locations were selected to include urban, semi-urban, and green regions.
Few devices were deployed at busy traffic junctions and roadsides. The data were recorded at a
frequency of every 30 seconds (sec) spanning over all the seasons for six months, thus aggregating
20.7 million data points.

5. A web-based dashboard was developed and deployed to visualize the data in real time.

6. Different analyses were carried out by observing seasonal mean and variance, spatial interpola-
tion, event-driven variation, and correlation.

Results show the optimal deployment across a varied landscape and can be a key factor in identi-
fying the release of high concentration in real-time.

4.2 Hardware Implementation

4.2.1 Hardware Specification

For dense deployment, 49 devices were developed. Fig. 4.1 shows the hardware architecture and
circuit board for the developed PM monitoring device in this work. The basic architecture consists
of sensors (PM sensor SDS011 and temperature humidity sensor SHT21), a communication module
(SIM800L and eSIM), a real-time clock (RTC), and a lithium polymer (LiPo) battery.

SDS011

SHT21

UART

ESP-32
WROOM

SAM-
M8Q

ESIM
MQTT

RTC

2G GPRS

UART

I2C

I2C

(a) Block Architecture (b) PM monitoring circuit board

Figure 4.1: Block Architecture and the circuit board of the deployed PM monitoring device.

All these components are connected to the microcontroller TTGO T-Call ESP32. The controller
reads data from all the sensors periodically every 30 sec and offloads it to ThingSpeak, a cloud-based
server employing message queuing telemetry transport secured (MQTTS) over a 2G or 4G or Wi-Fi
network and the data packet size is 28 bytes. The device is powered with an AC-DC power adapter and
a 1000 mAh battery and enclosed in an IP65 box made of ABS filament, the enclosure offers complete
protection against dust and a good level of protection against water. The form dimensions are: width =

18



Table 4.1: Specifications of the components used in the developed PM monitoring device.

Component Specification Value

SDS011 [53] Operating Voltage 4.7 V to 5.3 V
Operating Temperature −20 ◦C to +50 ◦C

Operating Rel. Humidity 0 % to 75 %
Measurement Parameters PM2.5 & PM10

Measurement Particle Size 0.3 to 10µm
Measuring Range 0.0 to 999.9 µgm−3

Serial Data Output Freq. 1 s
Maximum Current 100 mA

Signal Output UART, PWM

SHT21 [54] Operating Voltage 2.1 V to 3.6 V
Operating Temperature −40 ◦C to +125 ◦C

Operating Rel. Humidity 0 % to 100 %
Temperature Resolution 0.01 ◦C

Humidity Resolution 0.04 %RH
Temperature Accuracy ±0.3 ◦C

Humidity Accuracy ±2.0%RH
Response Time 8 s to 30 s
Signal Output I2C

TTGO T-Call Operating Voltage 3.3 V
ESP32 [55] Operating Temperature −40 ◦C to +85 ◦C

Max Operating Frequency 240 MHz
RAM 540 KB
Wi-Fi IEEE 802.11 b/g/n

SIM Module SIM800L

eSIM [56] Operating Voltage 1.62 V to 5 V
Operating Temperature −40 ◦C to +105 ◦C

Available Memory 128 KB or more
Technology 2G GPRS
Bandwidth 25 MHz
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125 mm, depth = 125 mm and height = 125 mm. The SDS011 and SIM800L modules are connected
to the controller through the UART protocol, while the SHT21 and RTC are connected through the I2C
protocol. The overall cost of the device after adding the cost of individual hardware components is 7000
INR (approximately 85 USD). The specifications of the individual hardware components are listed in
Table 1.

4.2.2 Price Comparison of Consumer-Grade PM Monitoring:

Table 4.2 lists the price for constructing the AirIoT PM monitoring device and compares it with other
low-cost consumer-grade PM monitoring devices. The monitors were selected considering available
online devices for the measurements of outdoor PM quality.

Table 4.2: Low-cost consumer-grade monitors and the associated price.

Device Retail Price (INR)

AirIoT 7000

Airveda 35000

Atmotube PRO 15000

Prana CAAQMS 64900

4.2.3 Working Mechanism of the Device

Fig. 4.2 illustrates the flowchart of the sensing algorithm developed to avoid data loss in the event of
a connection outage. The microcontroller first reads the sensed data every 30 sec; however, the time to
offload the sensed data depends upon the network. Next, the controller checks the network connectivity
for pushing the data to the server. If the network is available, the data is transmitted instantaneously.
However, if the network is unavailable, the data is stored locally in a part of the microcontroller RAM
until the device reconnects to the network. Note that the size of microcontroller RAM is 540 KB and
part of it is used for code and header files (created while pushing data), while the part of the remaining
memory can be used to store data. We define S = 20000 as the maximum number of data points that
can be stored. Every stored data point contains the value of sensed parameters and the time of sensing.
Once the connection restores, the stored data is uploaded to the cloud server in a bulk transmission and
subsequently cleared from the device. In the case device memory is filled with back-logged data in the
event of a long connection outage, i.e., if the number of stored data points (s) is equal to the S, the data
is cleared in first-in-first-out (FIFO) format to make space for the new incoming data.
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Figure 4.2: Working mechanism of the device.
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Table 4.3: Deployment Setup

Device No. of Location Type Network Type
Location

IIITH (AQ) 43 L1 (07 devices) Wi-Fi (2 devices)

L2 (05 devices) 2G eSIM (32 devices)

L3 (15 devices) 4G Jio-Fi (9 devices)

L4 (16 devices)

Airveda (AV) 6 L1 (04 devices) Wi-Fi (4 devices)

L2 (01 device) 2G eSIM (2 devices)

L3 (01 device)

4.3 Network Deployment Strategy

The deployment was done in the Gachibowli region of Hyderabad, the capital city of the Telangana
state and the fourth largest populated city in India [7]. Fig. 4.3a shows the plan for the field deployment
of devices, while Fig. 4.3b shows an example of the deployed device at one of the locations. A total of
49 devices were deployed in a region of approximately 4 km2 to understand the variation of PM across
different environments and areas.

Based on the landscape pattern of Gachibowli [57], [58], the entire region is divided into three cate-
gories: urban, semi-urban, and green. A few devices have also been deployed at busy traffic junctions
and roadsides. Fig. 4.3a shows the deployment plan of all the devices with exact locations of the
following location types:

• Location type L1: Urban region

• Location type L2: Semi-urban region

• Location type L3: Green region

• Location type L4: Traffic junctions and roadsides poles

The 4 km2 area has been divided into approximately 42 boxes. Every square box in Fig. 4.3a
represents an area of 400×400 m2. An attempt has been made to deploy 1 device in each box depending
on the availability of power, network and consent availability. However, in some boxes, more than 1
device has been deployed, as shown in Fig. 4.3a. The field deployment of devices was completed in
July 2021 and the data collection started in Aug. 2021. As part of experimentation, along with the
devices developed at IIITH, a few devices from an Indian manufacturer, Airveda, were also deployed
[59]. Table 4.3 summarizes all the deployed devices with their network configuration.
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(a) Deployment plan (b) Example field deployment

Figure 4.3: Deployment plan covering urban, semi-urban, green region, junctions, and roadsides poles.

4.4 Data Collection, Preprocessing and Calibration:

Fig. 4.4 shows a flow diagram depicting different steps in collecting usable data analysis data. This
involves data collection, creating the dataset, removing outliers and interpolating missing data, followed
by calibration. Each of the steps involved is explained in detail.

4.4.1 Data Collection

To create the data set, the air quality was sensed at a frequency of t = 30 sec for 43 IIITH devices. For
6 Airveda devices, t = 1 sec, averaged over 30 sec. All the devices were deployed for almost one year
and are still deployed. However, usable data were collected for seven months (Aug. 2021, Nov. 2021,
Dec. 2021, Jan. 2022, Apr. 2022, May 2022, and June 2022). The loss in the data is because the devices
had to be brought back to the lab due to the frequent failure of low-cost sensors requiring regular repair
and maintenance. Additionally, the devices were brought for seasonal calibration at regular intervals
and to make a major upgrade in the use of ThingSpeak from MQTT to MQTTS (in Mar. 2022). A total
of 20.70 million usable data points have been collected. As shown in Fig. 4.4a, the collected dataset
has PM2.5, PM10, temperature and RH parameters. Hereafter, all the concentration values of PM10
and PM2.5 are mentioned in µgm−3. The temperature and RH values are mentioned in ◦C and %,
respectively. Corresponding to every device, a vector of data points sent from the device is stored on the
cloud server for each sensing instance having the following elements:

• created at: Timestamp at which the sensor value is read. This timestamp is recorded utilizing the
RTC module of the device.
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Figure 4.4: Data collection, preprocessing, and calibration.

• PM10: Raw concentration of PM10 read by SDS011.

• PM2.5: Raw concentration of PM2.5 read by SDS011.

• RH: Raw RH value read by SHT21

• Temp: Raw temperature value read by SHT21 sensor.

The size of this payload (or sensor data sent from the device) for each sensing instance is 24 bytes. In
addition to this, the following static information is stored in the cloud server

• Device id: ID for device identification like IIITH device as AQ-XX and Airveda device as AV-
XX, where XX denotes the device sequence number.

• Location: Latitude and longitude according to the deployment location.

4.4.2 Data Preprocessing

The following methods have been employed for preprocessing the raw data received from the PM
monitoring device:

4.4.2.1 Outlier Removal

Environmental conditions like RH and temperature, sensor behavior and anthropogenic activities
occasionally result in outliers in the sensed data. Hence the raw data received from the devices need to
be preprocessed to make it statistically significant, as shown in Fig. 4.4b. PM values are unreliable at
higher RH levels (RH>80%). Apart from this, errors may cause raw values to be out of the PM sensor
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range (0-999). These unreliable points are thus removed. In the dataset, nearly 0.5% values have been
found unreliable.

Further, to identify and remove outliers, the interquartile range (IQR) method [60] is used. In this
method, the data is separated into four equal parts and sorted in ascending order using three quartiles
(Q1, Q2 (median), Q3). Let the difference between the first (Q1) and the third quartile (Q3) be repre-
sented by the IQR, which is a measure of dispersion. A decision range is set to detect outliers with this
approach, and every data point that falls outside this range has deemed an outliers. The lower and upper
values in the range are given by

Lr = Q1 − 1.5 IQR, (4.1)

Ur = Q3 + 1.5 IQR. (4.2)

Any data point less than the Lr or more than the Ur is called an outlier. In the collected dataset, nearly
1.4% values have been found as an outlier.

4.4.2.2 Interpolation

Interpolation is a technique to estimate the missing (or removed) data point between two existing
data points. In the data set, only 1.9% data is an outlier which is very less and easy to interpolate. In
this work, simple linear interpolation was used for this purpose.

4.4.3 Calibration

For calibration, the low-cost PM sensors were co-located with a reference sensor (Aeroqual S500
[61, 62]) in a ventilated room for a week. Data points were collected at a frequency of 30 sec. A raw
dataset of approximately 20,160 data points for each sensor was collected to perform the calibration.
Fig. 4.5a shows the time series plot of PM10 averaged hourly for a few devices before deployment in
the field. It can be observed that all the sensors follow the reference sensor in trend but differ with an
offset in absolute value. Therefore, there is a need for calibration. It can also be observed that the offsets
for each sensor are different. Although not shown to maintain brevity, the same is also valid for raw
PM2.5 values.

This thesis uses simple linear regression to compensate for the difference between the values of the
low-cost sensor and the reference sensor. Although many complex algorithms have been used in the
past for calibration, linear regression has been chosen since it can compensate for the offset well while
preserving the trend in the data, as shown in our previous work for SDS011 in [63]. The calibrated data
y(i) corresponding to the ith data point can be written as

y(i) = mx(i) + c, (4.3)

where x(i) is the ith raw data point andm, c are the learned parameters. Each sensor will have a different
value of m and c.
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(a) Timeseries Plot (b) Scatter Plot

Figure 4.5: Time series and scatter plot of raw PM10 data (1-hour average).

(a) Timeseries Plot (b) Scatter Plot

Figure 4.6: Time series and scatter plot of calibrated PM10 data (1-hour average).

Fig. 4.6a shows the calibrated data of PM10 for a few devices. It can be observed that the low-cost
sensors match well with the reference sensor after calibration. Similar results are obtained by training
separate functions for PM2.5 as well. It can also be observed from Fig. 4.5b and Fig. 4.6b that every
low-cost sensor differs uniquely from the reference sensor. The same is also concluded in [63] for
3 sensors. Therefore, PM10 and PM2.5 of each low-cost sensor have to be calibrated using unique
functions for each sensor. Moreover, it is observed that the sensor behaves differently in different
seasons. Hence, separate calibration functions have been calculated for different seasons by repeating
the process at the season’s onset.

4.5 Results and Analysis

This section presents mean and variance analysis results and the spatial interpolation for PM values
in different seasons. Further, the event-driven variation analysis is done for the data collected during
the festival of Diwali. This is followed by correlation analysis to understand the range, after which the
correlation between the two points is insignificant. Note that similar observations have been made for
PM2.5 as well.

26



4.5.1 Mean and Variance

Fig. 4.7 and Fig. 4.8 show the mean and variance of PM10 in monsoon (Aug. 2021), winter (Dec.
2021) and summer (May 2022). It can be observed that the mean and variance values are highest in
winter and lowest in monsoon. This is expected as the surface temperature inversion (cold air near the
ground and warm air on top) in winter trap PM near the ground. On the other hand, frequent rains during
monsoons settle the PM, reducing their concentration in the air. It can also be observed that there is a
lot of variation in the mean and the variance of the PM values among the various devices in the same
geographical region, demonstrating the need for dense deployment to understand street-level pollution.

Figure 4.7: Mean and of PM10 concentration at the different locations in different seasons.

Figure 4.8: Variance of PM10 concentration at the different locations in different seasons.

In Fig. 4.7, the three devices with the highest mean PM10 values among the 49 devices are AQ23
(Traffic junction), AQ20 (Green region), and AQ16 (Roadside), while the three devices with the lowest
mean PM10 values are AQ11 (Residential area), AQ43 (Roadside), and AQ22 (Roadside). Devices like
AQ23 near the traffic junctions have high PM10 exposure due to heavy traffic. Similarly, devices like
AQ16 near traffic lights have sluggish traffic flow leading to high mean PM10 concentrations. AQ20
is placed in high vegetation area but still shows a high mean due to ongoing construction activities in
the region. Among the ones with low mean values, AQ11 is placed in a residential area with fewer
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anthropogenic activities. Similarly, AQ43 and AQ22 are otherwise placed on the roadside but still
experience low mean PM10 due to the free flow of traffic and less anthropogenic activities.

4.5.2 Correlation Analysis

Figure 4.9: Correlation analysis of nodes at different locations

Correlation is a type of bivariate analysis that evaluates the direction and strength of an association
between two variables. A statistical instrument called the correlation coefficient is used to assess how
closely two variables are related when compared to one another. Different correlation coefficients, such
as Pearson and Kendall, exist. One of the most widely used correlation coefficients is Pearson’s, al-
though it makes a number of assumptions about the data such as normally distributed variables, linearly
related variables, the complete absence of outliers and homoscedasticity (homogeneity of variance). On
the other hand, Kendall’s tau is more appropriate for this study’s work as it does not require the presump-
tions indicated above. The correlation coefficient’s value ranges from +1 to -1 depending on the strength
of the association. Kendall’s correlation coefficients τ between the 49 sensor nodes have been calcu-
lated using hourly averaged PM10 and PM2.5 samples. The values of Kendall’s correlation coefficients
are shown in Fig.4.9 for a few of the nodes deployed at different location types. The coefficient varies
from a value of 0.044 to 0.74 for PM10 samples. The significant variation between correlation values
highlights the spatial variability between the PM values at different nodes. The maximum amount of
correlation has been observed between AQ14-AQ22 for PM10. The most minor correlation is observed
between nodes AQ18 and AQ41 and mainly with all other nodes for PM10. Interestingly, although
AQ01 and AQ40 are merely 350m apart, they correlate less. It can be attributed to the fact that AQ01

28



is approximately 5m away from the main road, whereas AQ40 is deployed right at the traffic junction.
This decrease in correlation shows how local activities affect the PM values and the necessity of densely
deploying PM monitoring devices for better understanding.

4.5.3 Spatial Interpolation

Inverse distance weighting (IDW), one of the most popular spatial interpolation techniques, is used
for spatial interpolation in this thesis. IDW follows the principle that closer devices will have more
impact than farther devices [64]. A linearly weighted combination of the measured values at the devices
is used to estimate the parameters at the nearest location. The weights are a function of the inverse
distance between the device’s location and the estimate’s location.

Figs. 4.10, 4.11 and 4.12 are the IDW-based interpolation maps for PM10 in monsoon (Aug 21),
winter (Dec 21) and summer (May 22), respectively. For all three seasons, the interpolation results are
shown at three different times of the day, 1100 hrs, 1400 hrs and 2100 hrs, based on hourly averaged
PM values. Similar to the observations from Figs. 4.7 and 4.8 it can also be observed in these figures
that the PM concentrations are lowest in monsoon and highest in winter.

It can be observed from Figs. 4.10, 4.11 and 4.12 that PM concentration was high at 1100 hrs and
2100 hrs and low at 1400 hrs. At 1100 hrs, PM concentration was high, primarily due to heavy traffic.
As the day progresses, the density of traffic decreases and the PM concentration decreases at 1400 hrs.
However, with the onset of night, PM concentrations can be seen as increased at 2100 hrs, falling in
peak traffic hours.

4.5.4 Event Driven Variation Analysis

Diwali, also known as the festival of lights, is celebrated during the start of the winter. As part of this
five-day festival, people burst large numbers of firecrackers in the late evening of the third day of Diwali
(4 Nov. 2021). The bursting of firecrackers leads to a significant increase in PM values during those
times. Fig. 4.13 shows a time series plot of hourly averaged PM10 values for a few devices over a few
days around Diwali. A few critical observations can be made from this figure. First, there was a sudden
drop in the PM10 values on the afternoon of 4th Nov. because of rain. The same has been observed on
5th and 6th Nov. afternoons.

Second, a clear peak is observed for all the devices during the late evening on 4 Nov. 2021, roughly
after 2000 hrs. For example, the PM10 values in AV64 increased from 40 to 307 before and after burst-
ing crackers. This peak can be attributed to the widespread bursting of firecrackers during the festive
celebrations. Third, it can be observed that the PM10 concentrations decrease sharply after a few hours,
indicating that the rise was temporary and activity driven.

Further, we see the effect of sparse deployment on the event-driven analysis. Figs. 4.15, 4.16 and
4.17 show the IDW-based interpolation maps for PM10 using all 49 devices and sparse deployment of
12 and 4 devices, respectively, at different time instances on 4 Nov. 2021. For sparse deployment, 4
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(a) At 1100 hrs (b) At 1400 hrs (c) At 2100 hrs

Figure 4.10: Spatial interpolation of PM10 values in Monsoon (Aug. 2021) using IDW.

(a) At 1100 hrs (b) At 1400 hrs (c) At 2100 hrs

Figure 4.11: Spatial interpolation of PM10 values in Winter (Dec. 2021) using IDW.

(a) At 1100 hrs (b) At 1400 hrs (c) At 2100 hrs

Figure 4.12: Spatial interpolation of PM10 values in Summer (May 2022) using IDW.
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and 12 devices were chosen randomly with the constraint that they should not form a cluster and should
also cover different types of regions. It can be seen from Fig. 4.15 that the interpolation plot with all 49
devices can identify the event as well as the local hotspots of pollution. Although the interpolation in
Fig. 4.16 (with 12 devices within 4 km2) can identify the event but is not able to identify the hotspots.
On the other hand, the interpolation (with 4 devices within 4 km2) misses the event entirely and can be
misleading. The root mean square error (RMSE) for different number of deployed devices (12 and 4
devices) is calculated. The RMSE for sparse deployments like 4 devices (59.29) is significantly more
compared to 12 devices (32.47).

Figure 4.13: Time Series of PM10 (1-Hourly Average) showing the rise in PM10 due to bursting of
firecrackers during Diwali.

4.5.5 Correlation Analysis

Correlation is a type of bivariate analysis that evaluates the direction and strength of an association
between two variables [65]. Kendall’s tau method is used as it does not require any presumptions on the
data and suits the work in this study. The correlation coefficient’s value ranges from -1 to +1 depending
on the strength of the association. Kendall’s correlation coefficients τ between the 49 sensor devices
have been calculated using hourly averaged PM10 samples.

A two-term exponential fit is obtained on the correlation values when plotted against the distance
between the devices. The fitted model can be written as

f(x) = a eb x + c ed x, (4.4)

where a = 0.4801, b = −0.0124, c = 0.7380 and d = −0.0001 are the coefficients of the best fit
for PM10. Fig. 4.14 shows the correlation of PM10 plotted against distance. It can be observed that

31



0 1000 2000 3000 4000
Distance (meters)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t (

P
M

10
)

Actual
Exponential fit (2 terms)
Knee distance (350 m)

Figure 4.14: Correlation coefficient of PM10 w.r.t distance between the deployed devices to find the
optimum distance between two deployment locations.

the change in the correlation coefficient under 350 meters is significantly large, after which the decline
is gradual. The τ change rate between 0 to 350 meters is very fast compared to distances above 350
meters. Similar results were obtained for PM2.5 as well. It indicates that the PM monitoring devices
shall be deployed at most 350 meters apart to accurately capture the spatial variability of PM.
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(a) At 1700 hrs (b) At 2100 hrs (c) At 2300 hrs

Figure 4.15: Spatial interpolation of PM10 values from densely deployed devices during Diwali 2021
using IDW.

(a) At 1700 hrs (b) At 2100 hrs (c) At 2300 hrs

Figure 4.16: Spatial interpolation of PM10 values from 12 sparsely deployed devices during Diwali
2021 using IDW.

(a) At 1700 hrs (b) At 2100 hrs (c) At 2300 hrs

Figure 4.17: Spatial interpolation of PM10 values from 4 sparsely deployed devices during Diwali 2021
using IDW.
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Chapter 5

Challenges

The field deployment of the devices was started in April 2021 and completed in July 2021. All de-
vices were deployed for almost one year and are still deployed. AirIoT was tested thoroughly regarding
embedded hardware and firmware credibility before taking it to the field. Still, plenty of challenges were
faced during the deployment that resulted in corrupt/ redundant data or, sometimes, hardware failure.
Most of the significant issues were faced during the monsoon season. Also, after addressing this prob-
lem we faced a few minor challenges. A few of such challenges and issues are listed in two subsections,
i.e., during deployment and after deployment from personal experience, which might be insightful to
this thesis’s on-field researchers and readers

5.0.1 Pre-Deployment Challenges

• As discussed in Chapter 4 the device in each 400 × 400 m2 box was a big task and a careful
selection of location was necessary.

• The process of designing and creating a small and compact device was time-consuming, primarily
to ensure that the device would be difficult to tamper with and would have adequate ventilation.

• Creating a low-cost device that can provide accurate and dependable data was a challenging task,
as the device needed to be both affordable and reliable

• Post-deployment calibration is challenging, particularly for a large number of devices (49 de-
vices). A proper close pack room is required in which at a certain interval expose to different
ways to generate PM like incense sticks, deodorant, room freshener, etc.

• The power issue in the botanical garden is one of the biggest challenges. We deployed a device
inside the jungle where there was no power supply and laid down 40 meters of wire to provide
power connectivity to the devices. The Figs. 5.1 and 5.2 show the power cable laying inside the
jungle.

34



• While deploying the device, one of the biggest challenges was explaining its use to people, as
they had many questions, which made the process a little complex. Some of the questions are
mentioned below:

- Why are we deploying?

- What does this device do?

- How much electricity is that device going to consume?

- If it shows our place polluted and will you take any steps?

- Can you show our area/place green on your dashboard?

Figure 5.1: Providing power connection in Botanical garden

Figure 5.2: Providing power connection in Botanical garden

35



5.0.2 Post-Deployment

• Faulty SDS011 sensor: After deployment, the first problem was encountered with the SDS011
sensor. It was determined that the cause of the failure was a batch of faulty sensors. As a result,
all of the devices had to be returned. This unexpected setback was frustrating for the team, as it
delayed their progress on the project. However, they quickly identified the issue and took action
to resolve it, which helped to minimize any long-term impacts.

• Theft: As a result of individuals mishandling the device, there have been several attempts at
theft, including instances of leaving the 240V electrical wire exposed, which poses a shock haz-
ard to the public, as well as turning off devices deployed on main roads and intersections. The
accompanying images, as shown in the figure, illustrate this issue.

(a) Device Stolen (b) After stealing the device wire is exposed which can
be dangerous

Figure 5.3: Theft

• Environment factor: Working and testing the device in a controlled environment was relatively
straightforward. However, when environmental factors were introduced, particularly during the
monsoon season, challenges arose. The rain and high relative humidity caused dust particles to
form a sticky, hard substance that clogged the inlet of the dust sensor. This resulted in the device
not functioning as intended and required regular maintenance. Despite these difficulties, the team
persevered and found ways to mitigate the effects of the environment on the device’s performance
by use of one filter, which will only allow PM2.5 and PM10 particles in side the sensor. The
clogging of the inlet of the sensor due to a nest of ants and insects was the second challenge faced
in deployed devices.

• Power supply: The devices were directly connected to the AC supply and had a battery backup of
6 hours, however, due to the unmaintained CCTV poles by the authority and frequent power out-
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Figure 5.4: Clogged inlet of dust sensor due to rain and humidity

ages, the team faced challenges and was often dependent on third parties for maintaining CCTV
poles.

• Hardware reset: This issue was faced only in a few nodes(2-3 nodes), especially are deployed
on roads and junction. The device fails to read sensor data and starts sending NAN values. To
resume the device hardware rest is required manually.

• Seasonal maintenance and calibration: The low-cost sensors had a limited life span and re-
quired proper maintenance. As a result, the team had to bring back all the devices before every
season, including summer, monsoon, just after monsoon, and winter, to clean and perform neces-
sary maintenance tasks. This included cleaning all 50 devices, conducting calibration, and other
required maintenance procedures. The process was time-consuming but essential to ensure the
proper functioning of the devices. Once maintenance was completed, the devices were redeployed
to their respective locations.

Figure 5.5: Ensuring accuracy through seasonal maintenance of dust sensors
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• Firmware update: One of the biggest challenges faced during the deployment was the upgrade
of the cloud server from MQTT to MQTTS, where the devices were sending data. The task
of upgrading the nodes was difficult as it needed to be done quickly to avoid significant data
loss, especially during winter, which is the peak pollution time. The team worked efficiently to
minimize downtime and ensure seamless data transmission from the devices to the cloud server.
The upgrade was a critical step towards improving the overall performance of the system and
ensuring the security of the data collected.

• Reliability of sensors: The low-cost IoT devices may have inherent inaccuracies that need to
be considered before deployment. While techniques like intelligent sensing and calibration can
address some of these inaccuracies, they are not a complete solution and may not be effective in
the long term. It is important to understand the limitations of these devices and develop appropri-
ate strategies to mitigate their inaccuracies in order to ensure the reliability and accuracy of IoT
systems. For this reason, a novel approach is introduced that can report the AQI without using
any PM sensor to avoid this hassle. They predict the AQI based on real-time traffic data and extra
parameters such as temperature and humidity. These are machine-learning-based approaches and
use real-time data to predict the AQI as discussed in section 5.0.3 of Chapter 5.

5.0.3 Machine Learning and Traffic-Based AQI Estimation

So far, we have discussed the methods, including some hardware that can sense and report the AQI.
As mentioned at the beginning of this thesis, hardware-based solutions require frequent maintenance
and cleaning. Researchers worldwide have introduced a few novel approaches that can report the AQI
without using any PM sensor to avoid this hassle. They predict the AQI based on real-time traffic data
and extra parameters such as temperature and humidity. These are machine-learning-based approaches
and use real-time data to predict the AQI.

There has been some work in recent years in the case of estimating air pollution with the help of
traffic and meteorological data using ML paradigms [66, 67, 68, 69, 70]. [66] collected a dataset from
weather and air stations, including wind data, temperature, relative humidity, air pollution data, and
ten agents present in the air. Fixed video cameras obtained vehicle information to collect traffic data.
Various ML models were tested on the features extracted from the dataset. However, this method limits
the AQI calculation to specific areas due to video camera installation to get traffic data. [67] used ML
models to predict roadside PM2.5 and PM10 values on the dataset collected at 19 air quality monitoring
sites in London, while [68] used RF models to analyze the PM10 trends for 31 air quality monitoring
sites in Switzerland. [69] used an ML-based approach to determine the air pollution level in a typical
street canyon. A dataset has been collected in Zagreb city (capital of Croatia) containing PM10, NO2,
and other pollutants on a daily basis for approximately three years. However, instead of finding the AQI
in categories, a real number using a regression-based approach is calculated. [70] used an ML-based
approach to predict the roadside particle mass concentration (PM2.5 and PM10) and particle number
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counts based on traffic and meteorological data in London, UK. The dataset was obtained from an air
quality monitoring site in London and sampled hourly for a period of seven years. In this work also,
instead of calculating the AQI as a category, the value of all the pollutants has been calculated as real
numbers using the regression approach.

In all the above articles, the data has been obtained using meteorological sites over a period of years.
However, PM values are spatially sensitive and can differ by a good margin in nearby locations. Hence,
in this article, the ground truth data such as PM2.5, PM10, feature values such as temperature, and rela-
tive humidity are collected through a dedicated PM monitoring node [71]. The nodes are placed in close
proximity so that the values obtained are as accurate as possible to the respective location. This data
collection process ensures that the sensor values are co-located and accurate. Secondly, this article aims
to predict the AQI category instead of a real-valued number. Calculating a level for the AQI makes it
more user-friendly and intuitive.
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Chapter 6

Concluding Remarks

The research carried out in this thesis shows the dense IoT PM monitoring network, an end-to-end
low-cost IoT system developed and densely deployed in Indian urban settings for monitoring PM with
fine spatial and temporal resolution. For evaluating the dense deployment, 49 calibrated devices were
deployed covering a 4 km2 area in Hyderabad, the capital city of Telangana state and the fourth most
populated city in India. For data visualization, a web-based dashboard was developed for the real-time
interface of PM data. The measurements over the year clearly show a significant difference between
the mean and variance of PM values across different locations and seasons. The mean values and the
variance were significantly higher in winter than in the summer and the monsoon. The IDW-based
spatial interpolation results in monsoon, winter and summer at three different times show significant
spatial variations in PM10 values. Furthermore, variation in PM values before and after the bursting
of firecrackers on the day of Diwali is clearly visible in the results. The results also show noticeable
temporal variations, with PM10 values rising by 4-5 (AV64) times at the same spot in a few hours,
coinciding with Diwali celebrations and identifying the hotspots in dense deployment, which is not
noticeable in sparse deployment. It has been shown that the correlation coefficient among a set of
devices in the area has low values demonstrating that the PM values across a small region may be
significantly different. A 350 m distance has been estimated for optimal device deployment for this data
set based on insights deduced from the correlation versus distance plot. Thus, there is a need for dense
deployment to understand the effect of local pollutants in the air and for improved spatial and temporal
resolution of the pollutant data.
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