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Abstract

Air pollution monitoring is crucial for assessing the health risks posed by pollutants, identifying pol-
lution sources, and developing effective strategies for reducing pollution and protecting public health.
The Indian government has taken initiatives, which provides real-time air quality data to the public and
raises awareness of air pollution levels. The initiative measures several pollutants, including Particulate
Matter (PM), and categorizes Air Quality Index (AQI) level into six categories ranging from “Good”
to “Severe”. The air pollution sensors employed for calculating the AQI are associated with several
limitations. Consequently, the central objective of this thesis is to estimate the AQI without relying on
any pollution sensor. To achieve this goal, the proposed methodology employs real-time traffic data and
images to estimate the AQI in real-time.

Firstly, this thesis propose an image processing based technique to estimate the AQI levels using traf-
fic images and weather parameters, which can be used in rural and sub-urban areas where sensors are
hard to deploy and maintain. This approach allows for real-time estimation of AQI through smartphones
and can be used portably. The proposed method achieves up to 90% accuracy for the AQI classification.
Furthermore, a feature-rich dataset is made publicly available to encourage further research.

After that, a novel method based on the Internet-of-Things (IoT) and Machine Learning (ML) is
proposed to estimate the AQI using real-time traffic data. To build a rich traffic dataset, PM moni-
toring nodes were deployed in 15 diverse traffic scenarios across Indian roads, and digital map ser-
vice providers were utilized. Three ML models, namely Random Forest (RF), Support Vector ma-
chine (SVM), and Multi Layer Perceptron (MLP), were trained on this dataset to predict AQI categories
into five levels. Experimental results demonstrate an accuracy of 82.60% and an F1-score of 83.67%
on the complete dataset. In addition, individual node datasets were used to train ML models, and the
behavior of AQI levels was observed.
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Chapter 1

Introduction

1.1 Motivation

The IoT is rapidly becoming one of the most transformative technologies of the 21st century. It refers
to the interconnection of everyday objects, devices, and machines through the internet, enabling them
to communicate, share data, and perform tasks without human intervention [2]. From smart homes
and cities to autonomous vehicles and wearable devices, IoT is reshaping the way we live, work, and
interact with the world around us. With the recent advancements in Artificial Intelligence (AI) based
algorithms, IoT devices has become more intelligent, adaptive, and autonomous [3]. AI techniques such
as ML, Deep Learning (DL), and Natural Language Processing (NLP) are being used to analyze the vast
amounts of data generated by IoT devices and extract insights that can be used to optimize operations,
improve decision-making, and enhance user experience. Learning algorithms can be used to analyze and
interpret data in real-time, which is critical for many IoT applications. These algorithms can learn from
the data and improve their accuracy over time, which can help identify patterns, trends, and anomalies
that might otherwise be missed.

Real-time air pollution monitoring is one of the significant applications of IoT, which has recently
gained substantial attention from researchers worldwide, resulting in a considerable body of work in
this domain [4, 5, 6]. Air pollution monitoring using IoT involves using connected sensors and devices
to collect data on air quality in real-time. These sensors can be deployed in various locations, including
homes, roads, and public spaces, to provide more localized information about air quality. In India, air
pollution is a major public health issue, with many cities consistently ranking among the most polluted
in the world [7]. To monitor air pollution, India has implemented a network of monitoring stations
across the country that measure levels of pollutants such as particulate matter, nitrogen oxides, sulfur
dioxide, and ozone [8]. However, the current air quality monitoring network in India covers only a small
number of cities and is often inadequate to provide a comprehensive understanding of the problem.
Many areas, particularly in rural and remote regions, are not covered by monitoring stations, leaving
the people living in those areas at risk. Even when monitoring stations are available and equipment is
functioning correctly, there can be issues with the quality of the data collected. For example, data may
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be missing or incomplete, or there may be inconsistencies in the way data is collected and processed.
In addition to the aforementioned issues, the use of sensors for air pollution monitoring presents several
challenges. The sensors require regular maintenance, such as replacing parts, cleaning, and ensuring
proper power supply and internet connectivity, to provide accurate measurements. Additionally, high-
quality sensors can be expensive, which may make it difficult to set up extensive monitoring networks,
especially in low-income or developing countries. To ensure the effectiveness and practicality of air
pollution monitoring systems that use sensor technology, it is crucial to consider these challenges when
designing monitoring programs.

The objective of this thesis is to address the difficulties encountered in air pollution monitoring
through the use of sensors. In particular, the thesis aims to devise an alternative mechanism for estimat-
ing the AQI that does not rely on the deployment of specific environment-based sensors. By doing so,
this approach seeks to overcome some of the limitations and costs associated with sensor-based monitor-
ing, and offer a more flexible and scalable solution for air quality estimation. The proposed mechanism
involves two methods: an image-based air quality estimation algorithm that uses learning methods to
predict the AQI on Indian roads, and a method that uses maps data and weather parameters to predict
the AQI. A feature-rich dataset is collected for the Indian scenario, which includes seasonal variability,
to evaluate the performance of both methods. The thesis provides a detailed comparison of the proposed
methods with existing methods, and presents a thorough analysis of the results.

1.2 Summary of Contributions

The main contributions from this thesis are presented in the chapters mentioned as follows -

• Chapter 4

– Proposed a novel methodology based on the IoT to estimate the real-time AQI into five
distinct levels. This is achieved by utilizing both traffic images and weather parameters in
the estimation process.

– The proposed methodology is innovative in that it represents the first instance of such a tech-
nique being employed on Indian roads. This approach provides a more detailed and accurate
assessment of AQI in real-time, which is of great significance in tackling air pollution and
promoting public health.

– Collection of a comprehensive traffic dataset containing 5048 images, as well as accompa-
nying weather data and ground truth PM values. The dataset was obtained from various
locations throughout the city of Hyderabad in India, and covers different seasons to pro-
vide a diverse and representative sample. This novel dataset will facilitate the development
and evaluation of new methods for air quality estimation using traffic images and weather
parameters in the context of Indian cities.
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– The proposed method achieved overall 82% accuracy considering PM variation due to sea-
son. We show a significant improvement in the accuracy of AQI estimation using images
when compared with existing work.

• Chapter 5

– Proposed a methodology that combines IoT and ML techniques to estimate the real-time
AQI into five levels incorporating real-time traffic data, vegetation information, and weather
parameters into the estimation process.

– A novel and extensive traffic dataset has been gathered, comprising approximately 210,000
data points. This dataset includes traffic data, such as the mobility rate of traffic, vegetation
information of the surrounding along with weather information such as temperature and
relative humidity, and co-located ground truth PM values.

– The dataset covers a period from January 2022 to May 2022 and includes samples from
15 distinct locations throughout Hyderabad, India. The acquisition of this rich and diverse
dataset will aid in the development and evaluation of new methods for air quality estimation
using traffic and weather data in the context of Indian cities.

– An ML algorithm, which is both straightforward and efficient, has been employed to esti-
mate the AQI level. The utilization of this algorithm facilitates the development of a fast
and real-time pipeline that requires minimal processing.

– The proposed method achieved an overall accuracy of 82.60% with an F1-Score of 83.67%.
We also show the results on individual traffic locations to better understand the scenario.

1.3 Structure of Thesis

The rest of this thesis is organized as follows-

• Chapter 2 offers a concise introduction to the IoT, including a discussion of its four-layer archi-
tecture. The chapter also explores various applications of IoT and the challenges associated with
its implementation.

• Chapter 3 provides the motivation for monitoring air pollution using various learning algorithms
through IoT. The discussion is mainly around the motivation and initiatives taken by the Indian
government behind air pollution monitoring, and learning methods used to compute the AQI using
images and numerological data.

• Chapter 4 introduces a methodology to predict the AQI in five levels, utilizing traffic images and
weather parameters. The chapter also addresses the impact of seasonal variability on PM and its
influence on the estimation of AQI during different seasons.
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• Chapter 5 presents a novel methodology based on the IoT and ML to estimate the AQI in five
levels, utilizing real-time traffic data, vegetation information, and weather parameters from a
newly-collected, feature-rich traffic dataset. This methodology is designed to be straightforward
and efficient, allowing for fast and real-time estimation of AQI with minimal processing.

• Chapter 6 presents the overall conclusion and future directions of the thesis.
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Chapter 2

An Overview on IoT

This chapter provides a comprehensive overview of the IoT and discusses its various applications and
challenges. In addition, it presents a detailed explanation of a four-layer IoT architecture, which serves
as a fundamental framework for IoT implementation. By introducing this architecture, the chapter aims
to provide readers with a better understanding of the different layers involved in IoT deployment and
how they interact with one another to enable efficient and effective IoT applications.

2.1 Introduction to IoT

The term IoT denotes the networking of embedded computing devices in commonplace objects (re-
ferred to as “things” in IoT) via the internet, which empowers them to exchange data and perform
consequential actions based on the information received. IoT is a combination of multiple disciplines,
which includes:

• Sensor technologies: Sensors are integral to developing IoT-based solutions as they detect and
convert environmental stimuli into discernable signals for both human and machine interpretation.

• Networking: IoT is nothing without a network to support it. Networking helps in communicating
with multiple devices in real time with the help of networking protocols. The networking pro-
tocols provide connectivity, power, policy, compute, security and manageability at scale to IoT
deployments.

• Embedded systems: At the crux of an IoT ecosystem lies the embedded system, which serves
as the fundamental computing element in electronic devices. Comprising an integrated circuit
housing a microcontroller designed for specific tasks, these low-power units aid in the processing
and transmission of data.

• Artificial Intelligence: The precise value of IoT is determined at its analysis step. This is where AI
technology plays a crucial role. AI helps obtain meaningful insights from data acquired through
sensors. AI can also be referred to as the “brain” of the IoT.
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• Cloud computing: Cloud computing and IoT exhibit a symbiotic relationship, as the former fa-
cilitates the seamless recording, capturing, processing, analysis, and storage of vast amounts of
data generated by IoT devices. Cloud computing assumes responsibility for ensuring storage and
security of data in IoT-based applications, and concurrently acts as a vital intermediary between
the IoT platform and big data.

This entire network of sensors, embedded systems, communication channels, and algorithms that
performs these tasks is called the IoT [9]. Fig.2.1 illustrates various disciplinary areas, devices and
components connected and working together. IoT can also be defined as the analysis of data to generate
a meaningful action, triggered subsequently after the interchange of data. The scope of IoT is not just
limited to getting the devices connected, but rather is more about exchanging meaningful information
from one device to another to acquire purposeful results.

2.2 IoT Architecture

IoT architecture refers to the combination of components such as sensors, microcontrollers, proto-
cols, and cloud services that devise IoT networking systems. Any IoT architecture is divided into layers
that allow developers to sense, analyze, monitor, and maintain the system’s integrity. The architecture of
IoT is a multi-step process through which data flows from devices connected to sensors, gets processed
on microcontrollers/microprocessors, is sent through a network, and then through the cloud for storage
and other usages [10]. With continuous development, IoT is proposed to grow even further, providing
users with new and improved experiences. Although many researchers have defined IoT architecture

 

  

Sensors Processors
Communication

Protocols
Cloud

Services

Acoustic Sensors  
(Microphone) 

Visual Sensors 
(Cameras, LiDAR)

Environmental Sensors 
(Temperature, Humidity,

 Gases, Particulate Matters)

Graphics Processing 
Units

System on Chip

Microcontrollers

Message Queuing 
Telemetry Transport 

(MQTT)

Google Cloud IoT

Microsoft Azure IoT

ThingSpeak IoT

Data 
Storage

Data 
Processing 

Modules

ML/DL 
Models

Hyper Text  
Transfer Protocol 

(HTTP)

Constrained Application 
Protocol 
(CoAP)
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between four to six layers [11, 12, 13], this thesis presents a four-layer IoT architecture (Fig. 2.1) com-
prised of 1. Sensors, 2. Processors, 3. Communication protocols, and 4. Cloud services.

Sensors - There are many different types of sensors used in IoT devices, each designed to measure
different physical properties or environmental conditions. Some common examples include:

• Environmental sensors: These sensors measure environmental parameters such as temperature,
humidity, light, air quality, and pressure.

• Visual sensors: These are sensors that can detect and capture images or video, which can be used
for various applications such as surveillance, object recognition, or augmented reality.

• Acoustic sensors: These are sensors that can detect and measure sound waves or vibrations. They
are commonly used for various applications such as noise monitoring, speech recognition, or
structural health monitoring.

• Motion and proximity sensors: Motion sensors are capable of detecting movement or changes
in motion that occur within their field of view. Conversely, proximity sensors are capable of
detecting the presence of objects located within their range without the need for physical contact.
Accelerometers, gyroscopes, infrared sensors, and ultrasonic sensors are some examples of these
types of sensors.

These are just a few examples of the many different types of sensors used in IoT devices. The spe-
cific type of sensor used will depend on the application and the data that needs to be collected.

Processors - IoT devices use a variety of processors, depending on the specific requirements of the
device and the application. Here are some examples of processors used in IoT:

• Microcontrollers (MCUs): MCUs are small, low-power processors designed for embedded sys-
tems. They are commonly used in IoT devices that require simple data processing and control
functions. Atmel AVR and ARM Cortex-M are the famous processors used in IoT belongs to this
category.

• System-on-Chip (SoC): SoCs are integrated circuits that combine multiple components, such as
microprocessors, memory, and input/output interfaces, onto a single chip. They are commonly
used in IoT devices that require more advanced processing capabilities. One of the most famous
examples of these kind of processor in use is Raspberry Pi.

• Graphics Processing Units (GPUs): GPUs are specialized processors designed for graphics pro-
cessing. They can also be used for general-purpose computing and are often used in IoT devices
that require high-performance computing capabilities.
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The choice of processor will depend on the specific requirements of the IoT device and the applica-
tion. Factors such as power consumption, processing speed, and data storage capacity will also play a
role in the selection of the processor.

Communication Protocols - Communication protocols are essential for IoT devices to exchange data
and communicate with other devices and systems. Here are some examples of communication protocols
commonly used in IoT:

• MQTT (Message Queuing Telemetry Transport): This is a lightweight publish-subscribe protocol
designed for IoT devices with limited processing power and bandwidth. It is commonly used
for machine-to-machine (M2M) communication and is often used in applications such as home
automation, smart energy, and asset tracking.

• HTTP (Hypertext Transfer Protocol): This is a standard protocol used for transmitting data over
the internet. It is commonly used in IoT applications for cloud-based services, such as remote
monitoring and control.

• CoAP (Constrained Application Protocol): This is a lightweight protocol designed for IoT devices
with limited processing power and memory. It is commonly used for IoT applications that require
low-latency communication, such as smart cities and industrial automation.

These are just a few examples of the many different communication protocols used in IoT devices. The
specific protocol chosen will depend on the requirements of the device, such as the range, data rate,
power consumption, and security requirements.

Cloud Services and User Interface: Cloud computing plays a critical role in IoT by providing a
scalable, reliable, and cost-effective platform for storing and processing the massive amounts of data
generated by IoT devices and systems [14, 15]. IoT devices generate vast amounts of data, and cloud
storage provides a scalable and cost-effective way to store and manage this data. Cloud platforms pro-
vide powerful data analytics capabilities that enable businesses to derive insights from the vast amounts
of data generated by IoT devices. These insights can help businesses optimize their operations, reduce
costs, and improve customer experiences. Cloud storage can also provide data redundancy and disaster
recovery capabilities, ensuring that IoT data is always available and secure. Cloud platforms can easily
scale to accommodate the growing number of IoT devices and the increasing volume of data they gen-
erate. This makes it possible for organizations to quickly and easily add new devices and services as
needed, without having to invest in expensive infrastructure upgrades. Cloud services are categorized
as 1. Infrastructure as a Service (IaaS) - Amazon Web Services (AWS), Microsoft Azure, ThingSpeak,
etc. 2. Platform as a Service (PaaS) - Heroku, Google App Engine, Microsoft Azure, etc. 3. Software
as a Service (SaaS) - Salesforce, Dropbox, Office 365, etc.

The User Interface (UI) is the primary means through which users interact with IoT devices and
systems. The UI is the interface that allows users to control, configure, and monitor IoT devices and
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Figure 2.2: An exemplar of the ThingSpeak user interface showing the graphs for stored data. (Best

viewed in color).

systems, and it can take many different forms, including mobile apps, web-based dashboards, voice
assistants, and smart displays. One of the key benefits of a well-designed UI in IoT solutions is that it can
make IoT devices and systems more accessible and user-friendly. A good UI can provide a seamless user
experience, making it easier for users to interact with IoT devices and systems, and reducing the need for
specialized technical knowledge. Another benefit of a good UI in IoT solutions is that it can enhance the
user’s understanding of the data generated by IoT devices and systems. A well-designed UI can provide
users with clear and concise visualizations of data, making it easier for them to understand and interpret
the data generated by IoT devices and systems. Fig. 2.2 shows the web-based user interface from
ThingSpeak [16], a popular cloud-based IoT analytics platform developed by MATLAB. This interface
allows users to create customized dashboards which enables real-time monitoring of IoT devices and
data, allowing users to quickly identify trends, anomalies, and insights allowing them to make data-
driven decisions.

2.3 IoT Applications

IoT has revolutionized the way we interact with our environment by enabling various devices to
connect and communicate with each other. As a result, the applications of IoT are diverse and far-
reaching, spanning across a broad range of industries, including smart cities, healthcare, transportation,
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agriculture, manufacturing, and many more. By leveraging IoT technology, these applications can en-
hance efficiency, increase productivity, and improve decision-making processes. As the IoT continues
to evolve, the potential for new and innovative applications is virtually limitless, making it an exciting
field to explore. Here are some emerging areas of IoT:

• Smart cities: Smart city is a concept that uses IoT technologies to improve the quality of life
for citizens in urban areas. Smart city solutions involve integrating various technologies such as
sensors, networks, and data analytics to optimize the use of resources, enhance public services,
and improve the overall livability of a city. Some of the applications which includes under smart
city are: 1. Traffic management, 2. Environmental monitoring, 3. Water management, 4. Public
safety, 5. Waste Management etc. The Indian government has recognized the potential of smart
city solutions in IoT to address key urban challenges and improve the quality of life for citizens.

1. Smart traffic management: Several cities in India, including Bangalore, Delhi, and Mumbai,
have implemented smart traffic management solutions such that intelligent traffic signaling
systems and real-time traffic monitoring that use sensors and data analytics to optimize
traffic flow and reduce congestion [17].

2. Energy management: Several cities in India, which includes tourism spots, have imple-
mented smart energy management solutions that use sensors and data analytics to monitor
and control energy usage in public spaces and buildings [18]. This includes technologies
such as smart lighting and energy-efficient buildings.

3. Air quality monitoring: IoT-enabled air quality monitoring systems can detect and mitigate
the harmful effects of air pollution by measuring air quality parameters and transmitting
real-time data to cloud platforms for analysis and reporting. In India, air pollution is a
significant issue, and the National Air Quality Monitoring Program (NAMP) [19] and the
Central Pollution Control Board (CPCB) [8] monitor air quality across the country. IoT-
enabled air quality monitoring systems have the potential to significantly improve air quality
monitoring, providing real-time data that can help individuals, businesses, and governments
take appropriate action to reduce pollution levels.

4. Smart water management: IoT has emerged as a promising technology for smart water
management systems. By integrating sensors, communication networks, and data analytics,
IoT can provide real-time monitoring and control of water resources, leading to efficient and
sustainable water management. One application of IoT in smart water management is the
development of smart meters for water usage monitoring [20, 21]. These smart meters can
track water usage in real-time and provide insights into consumption patterns, leak detection,
more accurate billing systems, and water quality. This can lead to optimized usage and
reduced wastage of water.

10



The utilization of IoT in smart city applications presents numerous potential use cases that can
contribute towards fostering a sustainable and advanced way of living. The opportunities for
leveraging IoT technology in this context are practically limitless.

• Healthcare: Healthcare is a critical sector where IoT has immense potential to improve the quality
of care and access to medical services [22, 23]. In India, where there is a shortage of healthcare
professionals and infrastructure [24], IoT-based solutions can help overcome these challenges and
improve healthcare outcomes. Some of the key applications of IoT in healthcare include medical
device monitoring, smart hospitals, medical supply chain management etc. IoT-based medical
device monitoring is one of the key application of IoT in healthcare. Medical devices such as
ventilators, Electro Cardio Gram (ECG) machines, and infusion pumps can be remotely monitored
and managed using IoT technologies [25, 26]. This can help improve the safety and efficiency
of medical procedures and reduce the risk of errors and complications. IoT technologies can
enable the development of smart hospitals [27], another key application of IoT in healthcare that
use sensors and data analytics to improve operational efficiency, reduce wait times, and enhance
patient care. This includes technologies such as smart beds, connected medical devices, and real-
time patient tracking. IoT technologies can improve the efficiency and transparency of the medical
supply chain [28], enabling hospitals and clinics to track inventory, reduce waste, and ensure the
timely delivery of medical supplies. This is particularly relevant in a country like India, where
access to medical supplies can be a challenge in some areas.

• Remote Triggered Labs: IoT technology has enabled the creation of remote triggered labs, which
allow researchers and students to perform experiments and interact with equipment remotely [29,
30, 31, 32]. This technology is particularly beneficial for educational institutions or research
facilities that have limited laboratory resources, as it enables them to conduct experiments without
the need for expensive lab equipment or a physical lab space. Remote triggered labs are typically
equipped with sensors, cameras, and other IoT devices that enable users to remotely monitor
and control experiments. For example, sensors can be used to monitor temperature, pressure,
and other environmental conditions, while cameras can be used to capture images or videos of
experiments as they are being conducted. Users can then view the data and images in real-time
via a web-based interface [33], and can control the equipment remotely to adjust experimental
parameters as needed. Overall, the use of IoT in remote triggered labs can revolutionize the
traditional learning experience and provide students with more opportunities to learn and explore
various fields.

• Autonomous vehicles: Autonomous vehicles, also known as self-driving cars, are an exciting
application of IoT technology [34]. They use a combination of sensors, machine learning algo-
rithms, and real-time data to navigate roads and safely transport passengers and cargo without
human intervention. Autonomous vehicles have the potential to revolutionize transportation by
improving safety, reducing congestion, and increasing efficiency. They can also provide new mo-
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bility options for people with disabilities and the elderly. Autonomous vehicles can be integrated
with smart city infrastructure to improve traffic flow, reduce emissions, and improve safety. They
can also be used to provide transportation services in underserved areas.

These are just a few examples of the many applications of IoT. As the technology continues to evolve,
we can expect to see IoT being applied in new and innovative ways across various industries.

2.4 Challenges in IoT

While IoT offers many benefits, there are several challenges that must be addressed to ensure the
success and widespread adoption of the technology. Here are some of the key challenges facing IoT:

• Sensors cost and maintenance: The IoT relies heavily on sensors, which are critical components
in collecting data and providing valuable insights for various applications. However, the cost
of sensors remains one of the primary challenges in IoT implementation. The initial cost of
purchasing sensors can be expensive, especially when deploying a large number of sensors. The
cost of sensors can also vary depending on the type, accuracy, and range of data they can collect.
Sensors require regular maintenance and occasional replacement. For instance, some sensors
need battery replacements, while others require periodic calibration. These maintenance and
replacement costs can add up over time, increasing the overall cost of IoT implementation.

• Performance: Performance challenges in IoT are a common concern for organizations and devel-
opers implementing IoT solutions. IoT solutions typically involve a large number of devices and
sensors. As the number of devices increases, the system must be able to scale to accommodate
the additional load. Ensuring that the system can handle the increased volume of data and traffic
is critical for maintaining performance. On the other hand, many IoT devices rely on batteries,
which can limit their processing power and data transmission capabilities. Power management
strategies must be employed to optimize battery life while maintaining device performance.

• Real-time Implementations: Latency is a significant concern in IoT solutions, particularly in
applications that require real-time or near-real-time data processing. Latency can be caused by
several factors, including network congestion, data processing delays, and device performance.
Real-time implementation in IoT involves collecting data from sensors, processing it, and tak-
ing action based on the results. Minimizing latency requires a well-designed architecture that
optimizes data transmission, processing, and storage.

• Deployment: Deploying IoT solutions can be a complex and challenging process, and there are
several challenges that organizations may face. One of the most significant challenges is ensuring
that IoT devices and systems can work seamlessly together. IoT devices and systems often come
from different vendors and may use different protocols and standards, making interoperability a
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significant challenge. Another significant challenge is ensuring that IoT devices and systems are
secure. IoT devices are vulnerable to security threats such as hacking, malware, and data breaches.
Ensuring that IoT devices are secure requires robust security measures such as encryption, access
control, and monitoring. IoT devices generate vast amounts of data, and managing and analyzing
this data can be challenging. Organizations need to have effective data management strategies in
place to ensure that data is stored, processed, and analyzed efficiently and effectively. Scalability
is also a significant challenge when deploying IoT solutions. IoT systems need to be designed to
handle large volumes of data and support the increasing number of connected devices. Ensuring
that IoT systems can scale effectively requires careful planning and infrastructure design.

• Security and Privacy: With the proliferation of IoT devices, there is a growing concern about
security and privacy. IoT devices are vulnerable to cyber attacks, and many devices lack sufficient
security features, making them easy targets for hackers. Additionally, the large amounts of data
collected by IoT devices raise concerns about data privacy and the potential misuse of personal
information.

Addressing these challenges will require collaboration between industry leaders, government agen-
cies, and other stakeholders. As IoT continues to evolve, it is essential to prioritize security, interoper-
ability, and scalability to ensure the technology’s widespread adoption and success.
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Chapter 3

Learning Methods for IoT on Air Pollution Monitoring

This chapter provides the motivation for monitoring air pollution using various learning algorithms
through IoT. The discussion is mainly around the motivation and initiatives taken by the Indian govern-
ment behind air pollution monitoring, and learning methods used to compute the AQI using images and
numerological data.

3.1 Motivation

Air pollution monitoring is the process of measuring and assessing the concentration of pollutants in
the air. It is an essential tool for identifying and tracking the sources and levels of pollutants e.g. PM2.5

(fine PM or particles with aerodynamic diameter less than 2.5 µm) and PM10 (coarse PM or particles
with aerodynamic diameter between 2.5 µm and 10 µm) in the environment.

One of the main reasons for air pollution monitoring is to protect public health. Air pollution is
linked to a range of health problems, including respiratory diseases, heart disease, and even cancer.
Monitoring air pollution helps to identify areas where air quality is poor and take measures to reduce
exposure to harmful pollutants. Another important reason for air pollution monitoring is to evaluate
the environmental impact of air pollution. Monitoring helps to evaluate the impact of air pollution on
the environment and take measures to reduce it. Corporations such as Google have equipped some of
their Street View vehicles with air pollution sensors to measure air quality on a street-by-street basis
in various cities [35]. In addition, startups in India have developed hardware and methodologies for
real-time estimation of AQI [36].

Air pollution monitoring is essential for developing and implementing pollution control strategies.
Monitoring data provides valuable information for the development and implementation of pollution
control strategies. This helps to ensure that the most effective measures are put in place to reduce air
pollution. For example, monitoring data can be used to identify the sources of pollutants and target mit-
igation efforts. It is important for governments, organizations, and individuals to invest in air pollution
monitoring and use monitoring data to inform policy and decision-making. In this thesis, the focus is to
monitor and predict the AQI where PM2.5 and PM10 are the main contributors.
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3.2 Air Pollution Monitoring Initiatives in India Using Weather Stations

India has taken several initiatives for air pollution monitoring to address the growing concerns over
air quality. Here are some of them:

National Air Quality Monitoring Programme (NAMP): The NAMP [19] is a program launched
by the Central Pollution Control Board (CPCB) in 1984 to monitor the ambient air quality in urban and
industrial areas of India. The program aims to collect air quality data from various monitoring stations
across the country to assess the status and trends of air pollution and to take appropriate measures
to control it. Under the NAMP, air quality monitoring is conducted for pollutants such as particulate
matter (PM10 and PM2.5), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), ozone
(O3), and lead (Pb). The data collected under the NAMP is used to generate AQI, which is a measure
of air quality that helps the public understand the level of pollution in their area and take necessary
precautions.

Continuous Ambient Air Quality Monitoring System (CAAQMS): The CAAQMS [37] was es-
tablished in India in 2009 as part of the NAMP to supplement the traditional manual monitoring of air
quality with real-time data. The system consists of several monitoring stations located in different parts
of the country, including major cities, industrial areas, and sensitive regions such as hill stations and
coastal areas. The CAAQMS is a network of real-time air quality monitoring stations that provide data
on pollutants like particulate matter, sulfur dioxide, nitrogen dioxide, carbon monoxide, and ozone. The
CAAQMS uses advanced instruments such as automatic gas analyzers, particle counters, and meteoro-
logical sensors to measure air quality parameters in real-time. The data collected is transmitted to the
CPCB’s central server for analysis and dissemination. Fig. 3.1 shows the CAAQMS network spread
across India.

National Clean Air Program (NCAP): The NCAP [38] was launched in 2019 with the aim of
reducing air pollution levels by 20-30% in 102 cities across the country by 2024. The program focuses
on implementing measures like increasing the number of monitoring stations, controlling emissions
from industries and vehicles, and promoting public awareness. Under the NCAP, each city is required
to develop a city action plan that includes measures to reduce emissions from various sources, such as
industries, vehicles, and households. The program also includes provisions for strengthening the air
quality monitoring network, improving public awareness, and promoting research and development in
the field of air pollution control.

Air Quality Early Warning System: In India, CPCB has developed an air quality early warning
system called SAFAR (System of Air Quality and Weather Forecasting and Research) [39]. SAFAR
provides air quality forecasts for Delhi, Mumbai, Pune, Ahmedabad, and other cities based on real-
time data from air quality monitoring stations and weather models. The system provides a color-coded
AQI based on the concentration of pollutants in the air and the potential health impacts. SAFAR also
provides health advisories and recommendations for the public and authorities to reduce exposure to
air pollution. The system can also provide information on the types of pollutants present in the air,
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Figure 3.1: Network depicting CAAQMS nodes installed in the various locations of India. (Best viewed

in color).

their concentrations, and potential health impacts. This information can help the public take necessary
precautions, such as avoiding outdoor activities, wearing masks, and using air purifiers.

3.3 Learning Algorithms Used in IoT for Air Pollution Monitoring

Learning algorithms are increasingly being used in air pollution monitoring to estimate, predict, and
control the level of air pollution. Machine learning algorithms, such as artificial neural networks, de-
cision trees, and deep learning algorithms such as Convolutional Neural Network (CNN) [40], Long
Short-Term Memory (LSTM) [40] etc., have been applied to various air quality parameters, such as
particulate matter (PM2.5 and PM10), carbon oxides (COx), sulfur dioxide (SO2) etc. These algorithms
use data from various sources, such as meteorological data, traffic data, satellite images, and sensor
networks, to predict air quality levels. They can analyze the complex relationships between the input
data and the air quality parameters to estimate the level of air pollution accurately. As mentioned in
section 2.4, one of the main challenges in IoT is sensor cost and maintenance. To address this issue,
researchers globally have developed innovative methods that can provide the AQI without requiring the
use of PM sensors, thereby avoiding the associated inconvenience. Using machine learning techniques,
researchers make predictions of the AQI by analyzing images and additional parameters like tempera-
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ture and humidity. These predictions rely on historical data to estimate the AQI.

When it comes to using IoT for air pollution monitoring, the data collected can be divided into two
types: 1. numerical data, which includes data in the form of numbers such as concentration of pollutants,
and 2. image-based data, which includes data in the form of images such as satellite imagery or pictures
of pollutants. To analyze and understand this data, learning algorithms are used. This thesis aims to
cover the methods used to teach these algorithms to work with both types of datasets (numerical and
image-based) for air pollution monitoring using IoT.

3.3.1 Learning Algorithms on Numerical Data

To compute air quality, a wide range of data can be collected from various sources in the environment.
Some of the important data that can be collected includes 1. Concentration of various gases in the
atmosphere (e.g. PM2.5 and PM10, carbon oxide, etc.), 2. Meteorological data such as temperature,
humidity, wind speed, etc. 3. Geographic data: land use, topography, and transportation patterns can
provide additional context for interpreting air quality data. 4. Satellite imagery: remote sensing data can
provide a broader picture of air quality across larger geographical areas. 5. Emission inventory data:
data on the amount and type of emissions from sources such as vehicles, industries, and power plants
can be used to estimate the expected air quality in an area. Researchers worldwide have utilized these
data sources, applying learning methodologies to compute the AQI [41, 42, 43, 44].

In [41], LSTM network was used to predict AQI on a dataset collected in Chennai, India. The dataset
consists of measurements of various pollutants such as particulate matter (PM2.5 and PM10), Ozone (O3),
Sulphur Dioxide (SO2), Nitrogen Dioxide (NO2), Carbon Monoxide (CO), Lead (Pb), and Ammonia
(NH3). Apart from this, relative humidity, atmospheric pressure, wind speed and wind degree was also
collected in the interval of 15 minutes. The dataset was collected for a duration of one year. Before
being used to train the LSTM network, the data was preprocessed and normalized. The LSTM network
was then used to predict the AQI level based on the available data on pollutants.

In [42], LSTM network was used to forecast PM2.5 levels in Santiago de Chile. The article dis-
cusses the use of air pollution and meteorological measurements over a ten-year period in Santiago,
Chile to analyze the behavior of three different zones. The study uses a method based on discrete cosine
transforms and photochemical predictors to rebuild missing data. Deep learning techniques, particu-
larly the LSTM model configured with a 7-day memory window, were found to be more effective at
capturing critical pollution events than traditional multi-layer neural networks. The LSTM model also
outperformed deterministic models currently used in Santiago, Chile.

CNN-LSTM model was used in [44] to improve the accuracy of air quality prediction for Beijing,
China. A dataset consisting meteorological values was collected for a duration of one year. The model
consists of two parts: a CNN layer and an LSTM layer. The use of the CNN layer allows the model to
efficiently extract important features from the data. These features are then passed to the LSTM layer,
which is able to capture the temporal dependencies of the data. By combining these two layers, the
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model is able to accurately predict future air quality data. The study compared the prediction accuracy
of the CNN-LSTM model with several other ML and DL models. The results show that the CNN-
LSTM model outperformed all other single prediction models in terms of accuracy. In particular, when
compared to the SARIMA model, which is a representative time series model, the CNN-LSTM model
showed significant improvements in its indicators. The MAE and RMSE of the CNN-LSTM were
reduced by 3.17% and 5.46% respectively, and the R2 score was improved by 8.45%

3.3.2 Learning Algorithms on Image-based Data

The improvement of image quality and the increased availability of smartphones and video surveil-
lance equipment, along with the growing use of artificial intelligence, has made it feasible to use image
processing and machine learning to detect air quality in images. The process of acquiring and collecting
images has become simpler and more convenient, enabling the use of these technologies for air quality
detection. The general public can readily capture images of their surroundings using their mobile phones
and employ existing air quality image recognition models to analyze the images and obtain relevant air
quality data. This information can be used to prompt individuals to take prompt action to mitigate air
pollution risks. Employing images for air quality detection can significantly decrease the dependence
on specialized hardware and equipment, as well as reduce the labor and resources needed for equipment
upkeep. This approach is therefore more efficient and convenient. Additionally, it can enhance the
precision of air quality monitoring across different spatial scales.

In [45], CNN was employed to estimate air pollution levels based on photos. Specifically, the CNN
was designed to classify images based on their corresponding PM2.5 index. A pollution images dataset
which includes photos shots taken in Beijing was collected. The architecture of the CNN consisted of 9
convolutional layers, 2 pooling layers, and 2 dropout layers. An improved version of the rectified linear
unit was utilized as the activation function to address the issue of gradient disappearance. To address the
air pollution classification problem, a negative log-log ordinal classifier with graph Softmax classifier
was utilized.

In [46], a VGG-16 CNN architecture was utilized along with transfer learning on a dataset that was
manually created to predict the AQI into different categories. The dataset consisted of 591 images that
were collected from public cameras located in Beijing, China. The corresponding PM data was also
collected from the nearest air quality monitoring station. After training a CNN model on the images, the
authors classified the AQI into three categories: Good, Moderate, and Severe. The CNN-based model
achieved a maximum accuracy of 68.74%.

In [47], ResNet-50 [48], which is a well-known CNN model, was used alongside support vector
regression (SVR) to predict the PM2.5 index of outdoor images. This approach involved integrating both
image and weather data. The authors used two PM image datasets available for this study. The first
dataset is called the Shanghai dataset, which includes 1885 photos captured at the Oriental Pearl Tower
in Shanghai, China, at different times of the day. The second dataset is the Beijing dataset, which was
created by the authors and contains 1514 photos obtained from a Beijing tourist website. The photos
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in this dataset were taken at different locations throughout Beijing City. The results of the experiment
indicated that incorporating weather features with CNN can enhance the accuracy of PM2.5 estimation
from images.

The use of ResNet architecture for estimating air quality levels is proposed in [49] through a model
known as AQC-Net. This model employs camera equipment to capture scene images and extract feature
information, which is subsequently classified to estimate air quality. A self-supervision module (SCA)
is incorporated to enhance the interdependent channel maps and improve feature representation by re-
constructing the global context information of the feature map. Moreover, a high-quality outdoor air
quality data set (NWNU-AQI) of images was gathered, comprising 5 different scenes, and labeled with
real-time monitoring data from corresponding air quality monitoring stations. The collection of images
was carried out over the course of two years, encompassing a range of weather conditions, seasons,
and time periods of the day. According to the experimental results, the SCA module was found to be
effective in improving the accuracy of the model’s classification. The results also indicate that it is more
suitable for air quality rating assessment compared to other methods.

In this chapter, the importance of air pollution monitoring is discussed, along with the initiatives
taken by the Indian government to address this issue. The chapter also focuses on the use of learning
algorithms in the IoT for estimating air pollution, including methodologies that utilize numerical and
image-based datasets.
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Chapter 4

Image Based Learning Methods for Air Pollution Monitoring

Typically, cities only have a limited number of air pollution monitoring stations that are of high qual-
ity but also expensive. However, by deploying a dense network of low-cost air pollution monitors based
on the IoT, it is possible to increase the spatial resolution of pollution data. This means that more areas
within the city can be monitored for pollution, providing a more comprehensive understanding of air
quality across the city. This can help to identify pollution hotspots and to develop targeted interventions
to improve air quality in specific areas [50, 51, 52].

Electronic gadgets are also available in the market that can monitor air quality and report the concen-
tration of PM from which AQI can be computed. These devices, however, demand maintenance with
time due to their limited lifetime. For example, SDS011 by Nova Fitness is one of the most widely
used laser-based PM sensors. The datasheet [53] of this sensor claims a lifetime of 8000 hours which is
roughly one year.

Instead of using a pollution monitoring, the AQI can also be determined with the help of image
processing-based technique. Image based AQI calculation can serve the purpose in rural and sub-urban
areas where sensors are unavailable. In general, sensors require regular maintenance. In addition, having
an image-based AQI estimation allows portability through smartphones as a user can capture a traffic
image and estimate the AQI in real-time. In this chapter, a method is proposed to estimate the AQI levels
using traffic images and weather parameters instead of pollution monitoring sensors.

4.1 Related Work

In recent years, some work has been done in the field of air quality measurements using DL paradigms.
Few of them [54, 55, 56] use deep learning-based algorithms on meteorological data-based air quality
estimation, while some of the work incorporates images from different locations to compute air qual-
ity [57, 46]. [57] extracts various numerical and categorical from an image using image processing
algorithms and applies Support Vector Regression (SVR) to train and predict PM values. Their dataset
contains 6587 images collected from a fixed scene with respective PM2.5 value, weather data, and ge-
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ographic location spanning three cities of China. The SVR model performs good for the two cities but
fails on the third city because of the narrow range of PM2.5 values.

[46] uses CNN architecture along with transfer learning on a manually created dataset. The dataset
contains a total of 591 images collected across different seasons from a Beijing tourist website with
their respective PM2.5 values. The air quality is categorized into three levels, i.e., good, moderate, and
severe. Overall, the proposed method achieved 68.74% classification accuracy. However, [46] did not
justify achieving the mentioned accuracy and what precisely the CNN model learned from the images
to predict the AQI.

The main contributions of this work are as follows:

• An IoT-based novel methodology is proposed to estimate the real-time AQI into five levels using
traffic images and weather parameters. To the best of the authors’ knowledge, this work is the
first of its kind to achieve this on Indian roads.

• An entirely new traffic dataset is collected on Indian roads containing 5048 images and related
weather data with co-located ground truth PM values. The dataset contains samples across the
Indian city of Hyderabad in different seasons.

• The proposed method achieved overall 82% accuracy considering PM variation due to season. We
show a significant improvement in the accuracy of AQI estimation using images when compared
with existing work [46].

4.2 Hardware Setup

Fig. 4.1 shows the block architecture of the hardware developed for this experiment. A Raspberry
Pi Zero W (Rpi0) Microcontroller Unit (MCU) and a PiCamera are connected to it to capture and
process the vehicle images. The other sensors that were interfaced with the MCU include BME280

PiCamera

BME 280
Humidity, Temp

Prana Air
PM2.5, PM10

4G Cellular
Wi-Fi AP

Raspberry 
Pi Zero W

Figure 4.1: Block and circuit diagram of the hardware setup.
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for temperature and humidity. A Prana Air [58] sensor was used for measuring the PM2.5 and PM10

concentrations. It is a reliable PM sensor, as shown in the study done by [59]. The data collected from
Prana sensor was used to calculate the AQI, which also served as the ground truth for the ML algorithm
developed for this experiment. The hardware setup is capable of sending the processed data into a
remote server, making it suitable for edge computing. A sample from each sensor was collected once
in every 30s by the MCU. The sample is processed using the methodology defined in the upcoming
sections. A Cellular 4G-based Wi-Fi access point was used to send the data to the remote server.

4.3 Measurement Campaign And Dataset

With the help of the hardware setup mentioned in the previous section, a traffic dataset was collected,
containing images of traffic and the measurement of pollution levels. The device was placed on top of a
car. The car was driven during the daytime and captured variations, including different scenarios (urban
and sub-urban areas), traffic conditions, and pollution levels. The dataset was captured across Sep’21-
Dec’21, comprising two seasons, monsoon and winter. The attempt was to get a diverse dataset. A
total of 5048 samples were collected in this duration. Datapoints collected between Sep’21 and Oct’21
were considered for the monsoon season. The rest of the data collected during Nov’21- Dec’21 was
accounted for the winter season. Fig.4.2 shows the routes traveled during this campaign in the metro
city of Hyderabad, India. Each captured image is associated with co-located respective sensor values,
i.e., temperature, humidity, PM2.5, and PM10 measurement. The AQI level is computed using the PM2.5

and PM10 values as per the Central Pollution Control Board, India [8], and categorized into five classes
which are as follows: 1. Good (0 - 50) 2. Satisfactory (51-100) 3. Moderate (101-200) 4. Poor
(201-300), and 5. Severe (>300). The distribution of the collected data in terms of the AQI level and
month is shown in Fig. 4.3.

Hyderabad, India

Figure 4.2: Street view of routes traveled during measurement campaign (Total distance = 1000 km).
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Figure 4.3: Left: Frequency of the AQI levels in the collected dataset. Right: Frequency of samples

collected across months. (Best viewed in color).

Table 4.1: Distribution of type of vehicles in the detection and localization dataset.

Vehicle Bike Car Truck Bus Rickshaw

Count 103608 90520 27837 18745 32280

4.4 Proposed Methodology

We propose a novel methodology to estimate AQI using traffic images for Indian roads. A pipeline
for the same is shown in Fig. 4.4. Firstly, the image features are extracted using DL and image process-
ing methods and concatenated with sensor features to generate a feature dataset. Further, an ML model
is trained on the feature dataset to estimate the AQI level.

4.4.1 Image Features Extraction

The central idea of this work is to estimate the air pollution i.e. AQI based on the traffic images.
Hence, features were derived from the collected images to use it further for AQI calculation. From the
given image, all the pollution-emitting vehicles were detected and their respective count was used as an
image feature. To detect the vehicles from a given image, You-Only-Look-Once version 5 (YOLOv5)
[60] was trained on Indian Driving Dataset (IDD) [61].

IDD is an object detection and localization dataset that includes images covering highways and lanes
with various traffic scenarios and illumination conditions. The objects in the images are annotated
(drawing a bounding box around the object) finely with their respective classes. Although the IDD has
34 unique labels containing every possible object in the traffic, our use case is limited to identifying
objects which contribute to air pollution. Hence, five pollution-emitting vehicle classes were picked
which are as follows: 1. Motorcycle 2. Car 3. Truck 4. Bus 5. Autorickshaw. As the classes are
limited, all the images containing the above-defined classes from the IDD were selected. The rest of
the images were discarded, resulting in a subset of the IDD. There were a total 37869 images in the
resulting dataset for which the object frequencies are shown in Table 4.1.
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To quantify the vehicles present in the image, YOLOv5 algorithm was used. YOLOv5 is an object
detection and localization algorithm which uses Convolutional Neural Network (CNN) as the feature
extractor to detect and localize multiple objects in a given image. The final output of YOLOv5 for a
single image is: detected objects (classification) and their bounding box (regression). YOLOv5 was
trained on the above-defined custom IDD.

4.4.2 Image Visibility Score Calculation

As the camera can only take images of the traffic and road condition in front of the test-vehicle,
the information received by the image is limited in terms of scope. It is essential to capture the air
pollution generated by the other elements, e.g. constructions (road, buildings etc.), fire etc as well. To
capture the essence of pollution caused by other sources, the visibility of the image is computed using
Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) [62] which is a no-reference Image
Quality Assessment (IQA) metric. As visibility is a subjective matter, a human evaluated dataset named
TID2008 [63] which has 1700 images and their respective quality scores is used as image visibility
score reference. The output of BRISQUE algorithm for a given image is a number between 0 to 100,
where 0 signifies the best, and 100 signifies the worst visibility. An example of image visibility metric
calculation can be seen in Fig. 4.4.

4.4.3 Feature Vector Generation

A feature vector is generated corresponding to each sample defined in the dataset collected in Section
4.3. The steps are as follows:

(a) Image features: Firstly, the image is passed to the trained YOLOv5 model, which detects the
count of pollution-emitting vehicles present in the image. The detection includes the count for each type
of vehicle, i.e., bus, car, truck, motorbike, and autorickshaw (total 5), and is treated as the image feature
vector. After that, the visibility score of the image is computed using the BRISQUE algorithm. The
output of this algorithm is a single number and contributes as an image feature vector.

(b) Sensor features: Finally, the corresponding sensor values, i.e., temperature and humidity, are
concatenated to the image feature vector to produce the complete feature vector of size 8 × 1 for the
given sample. An example of the feature vector is shown in Fig. 4.4.

(c) Label: The associated PM2.5 and PM10 concentration values obtained from the reference PM
sensor are used to generate the label for a given sample. An AQI value is computed using these sensor-
detected values and categorized into one of the five AQI levels mentioned in section 4.3. The categorized
AQI level is used as the corresponding label.

After processing the above-defined steps for all the samples in the dataset, a m × 8 sized data matrix
M is obtained, where m is the total number of samples present in the dataset. A m × 1 sized vector y
containing the corresponding labels is also obtained.
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Figure 4.4: Algorithmic pipeline of the proposed method. Firstly, the image is passed to the trained

YOLOv5 and BRISQUE algorithm to generate the image features. Then it is concatenated with corre-

sponding sensor features to generate a complete feature vector with the corresponding label. Finally, an

ML model is used to train and detect the AQI into five categories. (Best viewed in color)

4.4.4 Training

With the help of the dataset M, and the corresponding label vector y, an ML model was trained to
classify the samples into five different AQI levels. As this is a supervised learning problem, where all
the dataset features have continuous values, a classification-based ML model was trained to predict the
AQI for a given sample. To choose the best performing ML model, three different ML models that best
suit the data were experimented: 1. RF 2. SVM and 3. MLP. Each of the models has five classes (AQI
levels) as output.

Firstly, standard normalization was performed on all the dataset features as part of feature engi-
neering. This preprocessing step ensures that the feature values are centered around the mean with unit
standard deviation. After this, the normalized dataset was split into the training and validation part using
K-fold cross-validation strategy with 10 folds. This step ensures better model generalization ability than
standard train/test split and minimizes the occurrence of bias estimation. The ML model was trained
and validated on each fold separately. To evaluate the ML model, the average of the metrics (accuracy
and F1 score) of the validation part across all the ten folds were calculated.
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Detection: To compute the AQI for a given traffic location, the PiCamera captured the image, which
is passed to the YOLOv5 and BRISQUE algorithm to compute the count of each type of vehicle and
image visibility score respectively. The sensors provided the corresponding temperature and humidity
values. After this, using the image and sensor features, a feature vector of size 8 × 1 was created and
passed to the trained ML model to detect the AQI level. All the computation related to AQI estimation
(YOLOv5, BRISQUE and ML model) are performed on Rpi0 itself and only the estimated AQI is sent
to the remote server, thus making it suitable for edge-computation.

4.5 Experiments & Results

The YOLOv5 model was trained for 25 epochs and converted into a TensorFlow Lite [64] model to
run on Rpi0 . Fig. 4.5 shows evaluated metrics of the trained YOLOv5 model. An example of YOLOv5
output can be seen in Fig. 4.4.

For RF model, the number of decision trees was set to 100, and the split criterion was entropy.
Tree pruning mechanisms were used to avoid overfitting. For SVM model, the regularization parameter
was set to 5, and the RBF kernel was used. In the case of MLP model, three hidden layers, each
having 20 neurons with ReLU activation function, was used to train for 100 epochs. All the ML models
were implemented using the Scikit-learn [65] ML library. To detect one sample using the methodology
proposed, the Rpi0 took around 20 seconds.

Table 4.2 shows the R2 score of the features with respect to the AQI. It can be seen that all features
have a positive correlation with the AQI in the range of 0.2-0.4. This indicates the partial dependence
of the AQI on these features.

Figure 4.5: YOLOv5 training results. X-axis of each graph represents number of epochs and Y-axis

represents respective values. Final results at epoch 25 report 86.54% precision, 47% recall and 53.75%

mAP@0.5.
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Table 4.2: R2 score of features w.r.t AQI

Vehicles Temperature Humidity Visibility

AQI 0.33 0.29 0.31 0.41

Table 4.3: Performance of various methods on overall and season-wise data. Note that the ML methods

(SVM, MLP, RF) were trained on features extracted using method described in section 4.4.3.

Method Monsoon Winter Overall

Acc F1 Acc F1 Acc F1

SVM 0.86 0.85 0.74 0.72 0.77 0.76

MLP 0.90 0.89 0.78 0.74 0.79 0.78

RF 0.91 0.90 0.80 0.78 0.82 0.81

CNN [46] 0.71 0.70 0.61 0.61 0.67 0.65

The ML models were trained and validated for the dataset mentioned in Section 4.3. As there are
seasonal variations in PM values [66], we trained three different models each for: 1. Monsoon dataset
(samples collected between Sep’21 - Oct’21) 2. Winter dataset (samples collected between Nov’21 -
Dec’21), and 3. Overall dataset (combining Monsoon and Winter dataset) . The results obtained for all
three datasets are presented in Table 4.3.

For the overall dataset, the RF model achieved an accuracy of 82% and an F1-score of 81%. For the
data points of monsoon season, it is observed that the RF classifier performs the best with an accuracy
of 90.32%. The main reason for this relatively high accuracy is better training of the model as there
are significantly high number of data points with low AQI values in monsoon season. Hence, most of
the data points belong to the first two categories. This is more evident from the Fig. 4.3 that shows the
category-wise distribution of dataset. Categories named as “Good” and “Moderate” account for 50% of
the collected data points, which leaves significantly less room for the misclassification of the samples.
On the other hand, RF is the best performing model for Winter dataset as well, with an accuracy of
80.14%. It is relatively low as compared to the monsoon season as the data is spread over all categories
of AQI, which also increases the chance of misclassification.

To compare our proposed method with the existing work, we applied the method proposed in [46],
which used plain CNN on each of the three datasets mentioned above and observed an overall accuracy
improvement of 15%. The main reason behind this improvement is how features from images are
extracted. As a traffic image can have different objects, our work emphasizes focusing only on those
responsible for air pollution. On the other hand, applying plain CNN on the images straight-forward
fails to identify this paradigm.
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4.6 Conclusion

In this chapter, a simple and efficient method for classifying the AQI based on images using a com-
bination of supervised learning algorithms, including ML and DL, on an IoT device is presented. The
experimental results show that the proposed method achieves an accuracy of up to 90% for the AQI
classification. Additionally, a feature-rich dataset was created and made publicly available to encourage
further research. However, the current work is limited to predicting the AQI only during daylight hours,
and future work will include scaling the method for nighttime and collecting data during the summer
season. Furthermore, there are plans to collect data and predict AQI for different cities as well.
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Chapter 5

Maps Based Learning Methods for Air Pollution Monitoring

In the preceding chapter, a new approach was introduced to calculate the AQI in real-time for road
traffic using images and weather parameters. The central concept behind this approach was to obtain
an understanding of the number of vehicles present on the road using traffic images which contributes
towards air pollution. Nevertheless, there are other ways to obtain the same information, such as utilizing
real-time maps information, which includes information about the traffic flow of a particular road. This
chapter presents an alternative approach that utilizes real-time traffic data to estimate the AQI.

5.1 Related Work

There has been some work in recent years in case of estimating air pollution with the help of traffic
and meteorological data using ML paradigms [67, 68, 69, 70, 71]. [67] collected a dataset from weather
and air stations, including wind data, temperature, relative humidity, air pollution data, and ten agents
present in the air. Fixed video cameras obtained vehicle information to collect traffic data. Various ML
models were tested on the features extracted from the dataset. However, this method limits the AQI
calculation to specific areas due to video camera installation to get traffic data. [68] used ML models
to predict roadside PM2.5 and PM10 values on the dataset collected at 19 air quality monitoring sites
in London, while [69] used RF models to analyze the PM10 trends for 31 air quality monitoring sites
in Switzerland. [70] used ML-based approach to determine the air pollution level in a typical street
canyon. A dataset has been collected in Zagreb city (capital of Croatia) containing PM10, NO2, and
other pollutants on a daily basis for approximately three years. However, instead of finding the AQI
in categories, a real number using a regression-based approach is calculated. [71] used an ML-based
approach to predict the roadside particle mass concentration (PM2.5 and PM10) and particle number
counts based on traffic and meteorological data in London, UK. The dataset was obtained from an air
quality monitoring site in London and sampled hourly for a period of seven years. In this work also,
instead of calculating the AQI as a category, the value of all the pollutants has been calculated as real
numbers using the regression approach.
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In all the above articles, the data has been obtained using meteorological sites over a period of years.
However, PM values are spatially sensitive and can differ by a good margin in nearby locations. Hence,
in this article, the ground truth data such as PM2.5, PM10, feature values such as temperature, and
relative humidity are collected through a dedicated PM monitoring node [1]. The nodes are placed in
close proximity so that the values obtained are as accurate as possible to the respective location. This
data collection process ensures that the sensor values are co-located and accurate. Secondly, this article
aims to predict the AQI category instead of a real-valued number. Calculating a level for the AQI makes
it more user-friendly and intuitive.
The specific contributions of this work are as follows:

• An IoT and ML-based methodology is proposed to estimate the real-time AQI into five levels
using real-time traffic data and weather parameters. To the best of the authors’ knowledge, this
article is the first of its kind to achieve this on Indian roads.

• A completely new rich traffic dataset has been collected containing approximately 210,000 data
points, including traffic information (such as the mobility rate of the traffic), weather information
(temperature and relative humidity) and co-located ground truth PM values. The dataset contains
samples across the 15 different locations in Hyderabad from Jan’22 - May’22.

• A simple yet effective ML algorithm is used to estimate the AQI level, which enables the whole
pipeline to be fast and real-time with minimal processing.

• The proposed method achieved an overall accuracy of 82.60% with an F1-Score of 83.67%. We
also show the results on individual traffic locations to better understand the scenario.

5.2 IoT Network

Figs. 5.1(a)-5.1(b) show the block architecture and the circuit board, respectively, of the IoT PM
monitoring device deployed in the main road and junctions. Each node consists of TTGO T-Call ESP32

Table 5.1: Specifications of sensors used in the developed PM monitoring node.

Sensors Specification Value

SDS011 [53]

Measurement parameters

Operating Temp Range

Operating RH Range

PM2.5 & PM10

-20°C to +50°C

0-70%

SHT21 [72]

Measurement parameters

Operating Temp Range

Operating RH Range

Temp & RH

-40°C to +125°C

0% RH to 100% RH
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((a)) Architecture

((b)) Circuit board

Figure 5.1: PM monitoring node and architecture [1]
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[73] based microcontroller and sensors for PM, temperature and humidity; additionally, it has a real-
time clock (RTC) and Li-Po battery. The specifications of the sensors used are given in Table 5.1.
Nova PM SDS011, which is a light scattering principle-based sensor, has been used for measuring
the concentration of fine particulate matter PM2.5 and PM10, as it has been shown to have the best
performance with beta attenuation mass (BAM) compared to other low-cost sensors [74]. As concluded
in reference, that temperature (Temp) and relative humidity (RH) impact PM concentration and also the
light scattering-based PM sensors do not perform reliably well at extreme temperature and humidity
conditions. SHT21 is used to monitor these parameters for the reliability of SDS011 sensor readings.

The controller reads data from all the sensors periodically at a frequency of 30 sec and offloads it
to ThingSpeak, a cloud-based server employing MQTTS. The SDS011 and SIM800L modules are con-
nected to the controller through the UART protocol, while the SHT21 and RTC are connected through
the I2C protocol. The device is powered using a 3.3V rechargeable lithium polymer ion battery. An
AC-to-DC Power adapter and an onboard battery management circuit are used to charge the battery. As
the deployment is outdoor, the sensor node is enclosed in a polycarbonate box of IP65 rating, which
protects the node from dust and water.

Fig. 5.2 shows the location of the nodes and the traffic status of the roads (on an average day). These
locations are used to collect the real-time traffic data as well as sensor data. These locations mainly
contain major city roads and include a mixture of heavy and light traffic. The total distance covered is
approximately 15 kms spanning an area of 6 km2.

5.3 Dataset Collection

In this work, a dataset is collected using the PM monitoring node defined in the section 5.2, with the
help of digital map service providers. A 5-dimensional feature vector has been accumulated for each
data point in the dataset, where the features are

• Traffic Mobility Rate (TMR)

• Humidity

• Temperature

• Normalized Difference Vegetation Index (NDVI)

• Time of the day (categorized as morning, afternoon and evening)

After concatenating all the features accumulated from the samples in the dataset, am×5 data matrixM
is obtained, where m is the number of samples present in the dataset. A m×1 sized vector y containing
the corresponding label for each sample is the respective AQI category computed using PM2.5 and
PM10 values. Next, some of the important parameters such as TMR, NDVI, and AQI categorization are
explained in more detail.
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5.3.1 Traffic Mobility Rate

Traffic on the road is defined as the rate of mobility of the vehicles present on the road. In standard
speaking terms, high traffic refers to the slow mobility of the vehicles and vice versa. There are several
ways to get the traffic status of a specific location (road) using various digital map service providers,
e.g., Google Maps, HERE Maps, Bing Maps, etc. An application programming interface (API) from
HERE Maps [75] is used for our use case to collect the traffic data in real-time. HERE Maps RESTful
web API provides location-aware features such as traffic and weather information. For a given location
(latitude and longitude) with the desired radius, HERE Maps API returns a list of roadways and their
traffic information in real-time.

One of the vital traffic information provided by HERE Maps API is the mobility score of a given road,
also known as the Jamming Factor (JF). The JF is a real number between 1 and 10 and is categorized as
follows: 1. Free traffic flow (0 - 4) 2. Sluggish traffic flow (4 - 8) 3. Slow traffic flow (8 - 10). As for a
given location, there are multiple roadways and each roadway has a JF associated with it, we calculate

Hyderabad, India
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Figure 5.2: Locations of the 15 PM monitoring nodes on the map along with the traffic status. (Best

viewed in color)
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the final traffic mobility rate (TMR) as follows:

T =
1

n

n∑
r=1

Jr (5.1)

where Jr is the JF of the rth road and n is total number of roads for any given location.
The traffic parameters are collected every 30 seconds between 0800 hrs and 2100 hrs across the

month of Jan’22-May’22. A total of approximately 210,000 samples have been collected in this dura-
tion. One of the significant reasons to collect the data in the daytime is to predict the behavior of air
quality only in the presence of traffic, as in the night-time, the traffic is negligible.

5.3.2 NDVI Score

The NDVI [76] is a graphical indicator that indicates the presence of vegetation in a particular area.
It is a technique to classify the land as green, barren, etc., using satellite images of the earth. [77] shows
that vegetation is a sound-absorbent of PM. It helps settle the dust and acts as a natural bio-filter against
the PM. In our case, we try to locate the vegetation areas for the given map in Fig. 5.2 and then relate
the PM values captured by the sensor. As the vegetation in an area can affect the AQI category, it is
essential to consider this score while predicting the AQI. NDVI score is calculated as follows:

NDVI =
Rnir −Ared

Rnir +Ared
(5.2)

where Rnir is the amount of reflection on the vegetation area in near-infrared spectrum and Ared is
the amount of absorption onto the vegetation area in the red range of the spectrum. The NDVI value
ranges between −1 to +1, where −1 indicates a high probability of water body and +1 indicates a high
probability of vegetation in that area. For our paper, the NDVI values for the 15 locations were collected
every month as the change in the vegetation is very slow.

5.3.3 AQI Categorization

Each sampled data point of the dataset is associated with co-located respective node sensor values,
i.e., temperature, relative humidity, PM2.5, and PM10 measurement. The AQI level is computed using
the PM2.5 and PM10 values as per the Central Pollution Control Board, India [8], and categorized into
five classes which are as follows: 1. Good (0 - 50) 2. Satisfactory (51-100) 3. Moderate (101-200) 4.
Poor (201-300), and 5. Severe (>300).

5.4 Proposed Methodology

The main idea of this work is to predict the AQI for a given traffic scenario. We propose a simple yet
effective methodology to predict the AQI category using the dataset defined in section 5.3. The pipeline
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Figure 5.3: Algorithmic pipeline for the proposed methodology. Using the nodes deployed and their

location, TMR has been calculated using HERE Maps API. After that, the NDVI score and weather in-

formation (temperature and humidity) are concatenated to make a 5-dimensional feature vector dataset.

Further, this dataset is used to train the ML model to predict the AQI level. (Best viewed in color)

shown in Fig. 5.3 explains the proposed methodology. Firstly, the dataset is preprocessed, and then used
to train the ML model. Further, the trained ML model is used to predict the AQI category for a given
test sample.

5.4.1 Preprocessing

The first step before training the ML model is to preprocess the dataset M obtained in section 5.3 so
that it follows characteristics helping better model generalization. Standard normalization is applied to
the dataset for data preprocessing to achieve zero mean and unit standard deviation. This step ensures
that all the samples in the dataset follow a similar data distribution and helps converge faster while
training the model. After this, a MinMax scaler is applied to the dataset, transforming all the features
into a range of 0 to 1. This step ensures that all the features of the dataset are in the same range avoiding
any kind of bias in the model. The whole preprocessing step is defined as follows:

Ms =
M − µM
σM

(Standard normalization), (5.3)

M ′ =
Ms −min(Ms)

max(Ms)−min(Ms)
(MinMax scaling) (5.4)

where µM and σM is the mean and standard deviation of M along the columns respectively.
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5.4.2 Training

With the help of preprocessed dataset, M ′ defined in the above section, and the corresponding label
vector y, a ML model was trained to classify the samples into five different AQI categories. As this
is a supervised learning problem, a classification-based ML model was used. The dataset’s features
M ′ contain both kinds of values, i.e., continuous and discrete. All the values in the dataset are well
normalized with a similar range of values. Due to these factors, we chose ML models that best suit the
dataset. We experimented with three different ML models: 1. Random Forest (RF) [78], 2. Support
Vector Machine (SVM) [79] and, 3. Multi-Layer Perceptron (MLP) [80] and choose the best performing
model after hyperparameter tuning. Each model’s output was set to five classes depicting the respective
AQI categories.

While training, the training datasetM ′ was split using the K-fold cross-validation technique with ten
folds. The ML model was trained and validated on each fold separately. This is a paradigm used while
training the ML models to increase the generalization ability of the model. During the evaluation of the
ML model, four metrics were calculated: 1. Accuracy, 2. Precision 3. Recall, and 4. F1-score on the
validation part and mean was taken across all ten folds.

5.4.3 Detection

At the time of detection, firstly the traffic mobility rate is fetched using the HERE Maps API for
a given location. After that, the NDVI score for that particular area is obtained. These values are
concatenated with humidity and temperature of the location along with the time of the day making a
feature vector of size 5 × 1. This feature vector was first preprocessed using the methods defined is
subsection 5.4.1. After this, the trained model was used to predict the AQI category into one of the five
classes.

5.5 Results

As discussed in the proposed methodology (section 5.4), a total of three models were experimented
and trained to classify the AQI on the dataset defined in section 5.3. For the RF model, the number
of decision trees was set to 200 as the number of samples in the dataset is large, and the split criterion
was entropy. To avoid overfitting and get better convergence while training the RF model, tree pruning
mechanisms were used. For the SVM model, the regularization parameter(C) was set to 8 with Ra-
dial Basis Function kernel. In the case of the MLP model, five hidden layers with neuron sizes 128,
64, 32, 16, and 8, respectively, with Rectified Linear Unit (ReLU) non-linear activation function, was
used to train for 100 epochs. All these models were implemented using Scikit-Learn [65], which is a
popular python-based ML library. As these ML models do not have much parameters to train, they are
computationally very light and took only a few microseconds while inferencing on single test sample.
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Table 5.2: Importance of features w.r.t AQI

TMR NDVI Temperature Humidity Time of the Day

0.32 0.29 0.19 0.11 0.09

Table 5.3: Performance of the various ML models on overall dataset.

ML Model Accuracy Precision Recall F1-Score

RF 82.60% 84.73% 82.63% 83.67%

MLP 79.31% 77.98% 79.43% 78.70%

SVM 78.52% 77.13% 78.67% 77.89%

Table 5.2 shows the importance of the features in the dataset while computing the AQI. It can be
observed that the feature traffic mobility rate and NDVI score play an essential role with the support of
temperature and rest other features.

The ML models were trained and validated for the dataset mentioned in section 5.3. As the dataset
is collected on a total of 15 different nodes at different locations, the environmental factor around them
is diverse. Due to this reason, two types of ML models were trained: 1. ML model on the overall
dataset, and 2. Individual ML models for each node’s dataset. Each model’s performance was evaluated
on four different metrics named accuracy, precision, recall, and F1-score. The results obtained for the
overall and individual nodes are reported in Table 5.3 and 5.4 respectively. For the overall dataset, the
RF model performed the best with an accuracy of 82.6% and an F1-Score of 83.67%. In the case of the
individual dataset, it can be observed from Fig 5.2 that Node 6, 8, and 11 are near high vegetation areas.
For these nodes, the AQI level for most of the data points fell in the first two categories, i.e., “Good”
and “Satisfactory”. Hence, the model’s task was easier for these nodes and performed better than the
rest of the node’s data.

On the other hand, for Node 1 and 3, the traffic mobility rate is high as they are placed at road
junctions. For these nodes, the TMR varied mainly from “Sluggish” to “Slow”, resulting in Poor to
Moderate AQI levels with some instances of Severe as well.

5.6 Conclusion

This chapter introduced an IoT-based technique to predict the AQI from traffic and location data
in real-time. Location-based features like traffic mobility rate, NDVI score, and sensor-based features
like temperature and relative humidity were used to train the ML model. Additionally, a dataset having
around 210,000 samples that contain traffic and weather information is collected and to be released in
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Table 5.4: Performance of the ML model on individual node’s dataset. Please note that the best per-

forming ML model result is shown.

# Node Accuracy (%) Precision (%) Recall (%) F1-Score (%)

1 79.69 78.16 79.93 79.03

2 79.56 78.11 81.03 79.54

3 78.21 79.55 78.26 78.90

4 78.51 79.36 79.61 79.48

5 79.86 78.75 78.42 78.58

6 82.78 84.70 81.72 83.18

7 78.95 79.90 79.3 79.59

8 80.15 82.42 81.98 82.20

9 79.56 79.96 79.90 79.92

10 78.98 82.49 80.29 81.37

11 81.67 84.60 81.26 82.89

12 82.94 84.31 80.82 82.52

13 79.88 84.78 79.30 81.94

14 81.05 83.44 80.37 81.87

15 82.63 79.96 78.65 79.29
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the public domain to promote further research. Experimental results show an F1-Score of 83.67% for the
overall dataset, while experiments on node-specific datasets show the sensitiveness of the location. ML
model performance on locations having high vegetation index performs better than others, specifically
where the vegetation is low, and traffic is peak.
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Chapter 6

Concluding Remarks

6.1 Conclusions

The focus of this thesis is on exploring the effectiveness of learning methods in estimating air pol-
lution levels on Indian roads by utilizing images and traffic data. The introductory chapter highlights
the primary challenge associated with traditional methods for monitoring air pollution, specifically the
need to use sensors, which requires regular maintenance, calibration, and can be expensive when imple-
mented on a larger scale. Moreover, accessibility to remote areas and the quality of data obtained using
such sensors is also a crucial factor that needs to be taken into consideration. The proposed approaches
will help in the low-cost scalability of air pollution monitoring on large scale, where sensor deployment
is not feasible or costly.

In chapter 4, we present a straightforward yet efficient method for classifying the AQI based on
images using a combination of supervised learning algorithms, including ML and DL, on an IoT device.
The experimental results demonstrate that the proposed method achieves an impressive accuracy of up to
90% for AQI classification. To facilitate further research in this area, we have also created a feature-rich
dataset that is publicly available.

In chapter 5, we present an innovative IoT-based technique for real-time prediction of the AQI using
traffic and location data. Our method relies on a combination of location-based features, such as traffic
mobility rate and NDVI score, as well as sensor-based features like temperature and relative humidity
to train the ML model. Moreover, to facilitate further research in this field, we have collected and plan
to publicly release a dataset containing approximately 210,000 samples that include traffic and weather
information. The experimental results demonstrate an impressive F1-Score of 83.67% for the overall
dataset. Additionally, our experiments on node-specific datasets highlight the sensitivity of the location
factor. Specifically, we observe that the ML model performs better in locations with a high vegetation
index compared to those with low vegetation and peak traffic.

In conclusion, this thesis tackles the challenges associated with using sensors for air pollution mon-
itoring by proposing an alternative mechanism to estimate the AQI without the need for environmental
sensors. The proposed mechanism involves two methods, an image-based air quality estimation algo-
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rithm, and a method that uses maps data and weather parameters to predict the AQI. The thesis collects
a feature-rich dataset for the Indian scenario, including seasonal variability, to evaluate the performance
of both methods. The thesis presents a detailed comparison of the proposed methods with existing
methods and provides a thorough analysis of the results. The research findings of this thesis provide
a significant contribution towards developing an efficient air pollution monitoring mechanism that can
help in improving the air quality of cities, especially in developing countries where the use of sensors is
limited.

6.2 Future Directions

• Looking ahead, there are several potential avenues for future research and development of the
proposed AQI prediction method. One limitation of the current work is that it is restricted to
predicting AQI during daylight hours only. Therefore, future work will involve scaling the method
to predict AQI during night-time as well. This will require incorporating additional features and
data sources, such as street lighting conditions and traffic flow at night.

• Moreover, the current work is limited to collecting data during a particular season, and there is a
need to collect data during the summer season to account for seasonal variations. Additionally,
including more environmental factors like wind direction and speed, and topographic features like
elevation and land-use, can further enhance the accuracy of the AQI prediction.

• The proposed method utilizes only one camera to capture road images for AQI prediction. How-
ever, it is possible to improve the accuracy of AQI estimation by using multiple cameras that
capture both the front and rear views of the road. This can provide a more comprehensive un-
derstanding of the sources of pollution and their distribution, which can be useful for identifying
potential mitigation strategies.

• Furthermore, there are plans to extend the application of the proposed method to different cities
as well. Collecting data from multiple locations can help identify factors that are unique to each
city, and can improve the performance of the model by accounting for regional variations in air
quality.
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