
 
Introduction to Software 

Engineering 
 

(Week 1 – Session 2) 
 
 
 



What is Software Engineering? 

¢ Engineering approach to develop 
software. 
� Building Construction Analogy. 

¢ Systematic collection of  past 
experience: 
� Techniques,  
� Methodologies, 
� Guidelines. 



Exploratory programming to Software Engineering 

} The early programmers used an exploratory (also 
called build and fix) style.  

}  In the build and fix (exploratory) style, normally a 
`dirty' program is quickly developed. 

}  The different imperfections that are subsequently 
noticed are fixed.  



What is Wrong with the Exploratory Style? 

}  Can successfully be used for very small programs only. 

Program Size Ef
fo

rt
, 
ti
m
e,

 c
os

t 

Exploratory 
Software 
Engineering 

Machine 



What is Wrong with the Exploratory Style? 
Contd… 

} Besides the exponential growth of  effort, cost, 
and time with problem size: 

}  Exploratory style usually results in unmaintainable 
code.  

}  It becomes very difficult to use the exploratory style in 
a team development environment.  

 



What is Wrong with the Exploratory Style? 
Contd… 

} Why does the effort required to develop a 
product grow exponentially with product 
size?  

} Why does the approach completely break 
down when the product size becomes large?  



Why Study Software Engineering? (1) 

} To acquire skills to develop large 
programs.   
} Exponential growth in complexity and 

difficulty level with size.   

} The ad hoc approach breaks down when 
size of  software increases. 



Why Study Software Engineering? (2) 

} Ability to solve complex programming 
problems:  
}  How to break large projects into smaller and 

manageable parts? 
}  How to use abstraction? 

} Also learn techniques of:  
}  Specification, design, user interface development, 

testing, project management, etc. 



Why Study Software Engineering? (3) 

} To  develop large, high quality 
software systems:  

}  Large systems cannot be understood by 
one person 

}  Requires team work 

}  Achieve sufficient quality (e.g. 
Maintainability, Usability, etc) 

 



PRINCIPLES DEPLOYED BY SOFTWARE 
ENGINEERING 

Abstraction: 
o  Simplify a problem by omitting unnecessary details. 
o  Focus attention on only one aspect of  the problem and ignore irrelevant 

details. 

Decomposition: 
o  Decompose a problem into many small independent parts.  

o  The small parts are then taken up one by one and solved  separately.  

o  The idea is that each  small part would be easy to grasp and can be 
easily solved.  

o  The full problem is solved when all the parts are solved.  

 



Programs versus Software Products 

}  Usually small in size 

}  Author himself  is sole user 

}  Single developer                                

}  Lacks proper user interface 

}  Lacks proper 
documentation 

}  Ad hoc development.   

}  Large 
}  Large number of  users 
}  Team of  developers 
}  Well-designed interface 
}  Well documented & user-

manual prepared 
}  Systematic development 



Types of  Software Projects 

} Software products 

} Outsourced projects 

} Indian companies have focused on 
outsourced projects. 



Types of  software 

13 

Custom 
}  For a specific customer 
 

Generic 
}  COTS (Commercial Off  The Shelf) 
 

Embedded 
}  Build into Hardware 
 
 
 
 



Software Development 
Life Cycle (SDLC) 



The opportunistic approach 

Think of Idea
for

Improvement

Modify
Until

Satisfied

First
Prototype

© Lethbridge/Laganière 2001 

¢  OK for small, informal projects 
¢  Inappropriate for professional environments/

complex software where on-time delivery and high 
quality are expected 





WHY LIFE CYCLE MODEL? 

}   A software project will never succeed if activities are not 
coordinated:  
}  one engineer starts writing code, 
}  another concentrates on writing the test document first,  
}  yet another engineer first defines the file structure 
}  another defines the I/O for his portion first 

}  Adherence can lead to accurate status reports 

}  Otherwise, it becomes very difficult to track the progress of 
the project   

}  the project manager would have to depend on the 
guesses of the team members. 



LIFE CYCLE MODEL 

}  A software life cycle model (or  process 
model): 
}  a descriptive and diagrammatic model of software life cycle: 
}  identifies all the activities required for product development  
}  establishes a precedence ordering among the different activities 
}  divides life cycle into phases.   



SOFTWARE DEVELOPMENT LIFE CYCLE 

}   Typical software life cycle or software process 
consists of following phases: 

}  Feasibility study (involves business case) 
}  Requirements analysis and specification,  
} Design  
} Coding  
}  Testing 
} Maintenance 



RELATIVE EFFORT FOR PHASES 

}  Phases between feasibility study 
and testing   
}  known as development phases. 

}  Among all life cycle phases 
}  maintenance phase consumes  

maximum effort. 0
10
20
30
40
50
60

Re
q.
	  S
p

D
es
ig
n

Co
di
ng

Te
st

M
ai
nt
nc
e

Relative Effort



FEASIBILITY STUDY 

}  Main aim of feasibility study: determine whether developing the 
product  
}   financially worthwhile 

}   technically feasible. 

}  First roughly understand what the customer wants: 
}  Inputs 
}  Processing 
}  Outputs  
}  various constraints on the behaviour of the system 



ACTIVITIES DURING FEASIBILITY 
STUDY 

}  Work out an overall understanding of the problem 

}  Formulate different solution strategies 

}  Examine alternate solution strategies in terms of: 
}  resources required  
}  cost of development  
}  development time 

}  Perform a cost/benefit analysis: 
}  you may determine that none of the solutions is feasible due to high cost, 

resource constraints, technical reasons. 



REQUIREMENTS ANALYSIS AND 
SPECIFICATION 

}  Aim of this phase: 
}  understand the exact requirements of the 

customer,   
}  document them properly. 

}  Consists of two distinct activities:  
}  requirements gathering and analysis  
}  requirements specification. 



GOALS OF REQUIREMENTS 
ANALYSIS 

}  Collect all related data from the customer: 
}  analyze the collected data to clearly 

understand what the customer wants, 
}  ensure correctness, consistency and 

unambiguity. 



REQUIREMENTS GATHERING 

}  Gathering relevant data: 
}  usually collected from the end-users through 

interviews and discussions. 
}  For example,  for a business accounting 

software: 
}  interview all the accountants of the organization to 

find out their requirements.  



REQUIREMENTS ANALYSIS (CONT.) 

} The data you initially collect from the 
users: 
} would usually contain several 

contradictions and ambiguities:  
}  each user  typically has only a partial and 

incomplete view of the system. 



REQUIREMENTS ANALYSIS 
(CONT.) 

}  Ambiguities and contradictions:  
}  must be identified  

}  resolved by discussions with the customers.  
}  Next, requirements are organized:  

}  into a Software Requirements Specification (SRS) 
document. 



DESIGN 

} Design  phase transforms  
requirements  specification: 
}   into a  form suitable for implementation 

in some programming language. 



DESIGN 

}  High-level design:   
}  decompose the system into modules,   

}  represent invocation relationships among the modules.  

}  Detailed design: 
}  different modules designed in greater detail: 

}  data structures and algorithms for each module are designed. 



IMPLEMENTATION 

}  During the implementation phase:  
}  each module of the design is  coded,  
}  each module is unit tested 

}  tested independently as a stand alone unit, and 
debugged 



IMPLEMENTATION (CONT.) 

}  The purpose of  unit testing: 
}  test if individual modules work correctly.   

}  The end product of implementation  phase:  
}  a set of program modules that have been  

tested individually. 



INTEGRATION AND SYSTEM 
TESTING 

}  Different modules are integrated in a planned manner: 
}  modules are almost never integrated in one shot. 

}  Normally integration is carried out through a number of 
steps. 

}  During each integration step,  
}  the partially integrated system is tested. 



INTEGRATION AND SYSTEM 
TESTING 

M1

M6M3

M2M8

M4

M5 M7



SYSTEM TESTING 

}  After all the modules have been successfully 
integrated and tested:  
}  system testing is carried out. 

}  Goal of system testing: 
}  ensure that the developed system functions 
according to its requirements as specified 

in the SRS document. 



MAINTENANCE 

} Maintenance of any software product:  
}  requires much more effort than the effort 

to develop the product itself. 
} development effort to maintenance effort 

is typically 40:60. 



MAINTENANCE (CONT.) 

}  Preventive maintenance 
}  Making appropriate changes to prevent the occurrence of 

errors 

}  Corrective maintenance 
}  Correct errors which were not discovered during the product 

development  phases 

}  Perfective maintenance  
}  Improve implementation of the system 
}  enhance functionalities of the system 

}  Adaptive maintenance 
}  Port software to a new environment 



 SUMMARY 

}  A software life cycle model (or  process model): 
}  a descriptive and diagrammatic model of software life cycle 
}  identifies all the activities required for product development,  
}  establishes a precedence ordering among the different 

activities 
}  divides life cycle into phases.   

}  A fundamental necessity while developing any large software 
product:  

}  Adoption of  a software development life cycle model 

(software process model).  


