Introduction to Software
Engineering

(Week 1 — Session 2)



What 1s Software Engineering?

OEngineering approach to develop
software.

Building Construction Analogy.

OSystematic collection of past
experience:

Techniques,
Methodologies,

Guidelines.



Exploratory programming to Software Engineering

» The early programmers used an cxploratory (also

called build and fix) style.

In the build and fix (exploratory) style, normally a
“dirty' program 1s quickly developed.

The ditterent imperfections that are subsequently
noticed are fixed.



What 1s Wrong with the Exploratory Styler

» Can successtully be used for very small programs only.

Software
Exploratqry Engineering

—>

Effort, time, cost

Machine

Program Size —*>



What 1s Wrong with the Exploratory Styler

Contd...

» Besides the exponential growth of effort, cost,

and time with problem size:

Exploratory style usually results in unmaintainable

code.

It becomes very ditficult to use the exploratory style in

a team development environment.



What 1s Wrong with the Exploratory Styler

Contd...

» Why does the effort required to develop a
product grow exponentially with product
sizer

» Why does the approach completely break

down when the product size becomes large?



Why Study Software Engineering? (1)

» To acquire skills to develop large
programes.

Exponential growth in complexity and

difficulty level with size.
The ad hoc approach breaks down when

size of software increases.



Why Study Software Engineering? (2)

» Ability to solve complex programming
problems:

How to break large projects into smaller and
manageable parts?

How to use abstraction? *

» Also learn techniques of:

Specitication, design, user intertface development,
testing, project management, etc.



Why Study Software Engineering? (3)

»'To develop large, high quality
software systems:

Large systems cannot be understood by
one person

Requires team work

Achieve sufficient quality (e.g.
Maintainability, Usability, etc)



PRINCIPLES DEPLOYED BY SOFTWARE
ENGINEERING

Abstraction:

Simplity a problem by omitting unnecessary details.

Decomposition:
Decompose a problem into many small independent parts.

The small parts are then taken up one by one and solved separately.

The idea is that each small part would be easy to grasp and can be
easily solved.

The full problem is solved when all the parts are solved.



Programs versus Software Products

Usually small 1n size

Author himself is sole user

Lacks proper
documentation

» Large number of users

——*—————

— — LA T R . el

e



Types of Software Projects

» Software products
» Outsourced projects

» Indian companies have focused on

outsourced projects.



Types ot software

Custom

For a specific customer

Generic
COTS (Commercial Off The Shelf)

Embedded

Build into Hardware

13



Software Development
Lite Cycle (SDLC)



The opportunistic approach

o Modify Think of Idea
Prototype —> U-ntl-l —> for
Satisfied Improvement

}

o OK for small, informal projects

o Inappropriate for professional environments/
complex software where on-time delivery and high
quality are expected

© Lethbridge/Laganiére 2001



How the customer
explained it

How the Project
Leader understood it

How the Analyst
designed it

How the Programmer
wrote it

How the Business
Consultant described it

How the project
was documented

What operations
installed

How the customer
was bhilled

How it was supported

What the customer
really needed




WHY LIFE CYCLE MODEL?

» A software project will never succeed if activities are not
coordinated:

one engineer starts writing code,

another concentrates on writing the test document first,
yet another engineer first defines the file structure
another defines the I/O for his portion first

» Adherence can lead to accurate status reports

» Otherwise, it becomes very difficult to track the progress of
the project

the project manager would have to depend on the
guesses of the team members.



LIFE CYCLE MODEL

» A software life cycle model (or process
model):

a descriptive and diagrammatic model of software life cycle:
identifies all the activities required for product development
establishes a precedence ordering among the different activities
divides life cycle into phases.



SOFTWARE DEVELOPMENT LIFE CYCLE

» Typical software life cycle or software process
consists of following phases:

Feasibility study (involves business case)
Requirements analysis and specification,
Design

Coding

Testing

Maintenance



RELATIVE EFFORT FOR PHASES

» Phases between feasibility study gq
and testing

50 ,
known as development phases. Relative Effo
40
30

20

» Among all life cycle phases

maintenance phase consumes 10
maximum effort. 0"




FEASIBILITY STUDY

» Main aim of feasibility study: determine whether developing the
product

financially worthwhile

technically feasible.

» First roughly understand what the customer wants:

Inputs
Processing

Outputs
various constraints on the behaviour of the system



ACTIVITIES DURING FEASIBILITY
STUDY

» Work out an overall understanding of the problem

» Formulate different solution strategies

» Examine alternate solution strategies in terms of:
resources required

cost of development

development time

» Perform a cost/benefit analysis:

you may determine that none of the solutions is feasible due to high cost,
resource constraints, technical reasons.



REQUIREMENTS ANALYSIS AND
SPECIFICATION

» Aim of this phase:

understand the exact requirements of the
customer,

document them properly.

» Consists of two distinct activities:
requirements gathering and analysis

requirements specification.



GOALS OF REQUIREMENTS
ANALYSIS

» Collect all related data from the customer:

analyze the collected data to clearly
understand what the customer wants,

ensure correctness, consistency and
unambiguity.



REQUIREMENTS GATHERING

» Gathering relevant data:

usually collected from the end-users through
interviews and discussions.

For example, for a business accounting
software:

interview all the accountants of the organization to
find out their requirements.



REQUIREMENTS ANALYSIS (conr

» The data you initially collect from the
users:

would usually contain several
contradictions and ambiguities:

each user typically has only a partial and
incomplete view of the system.



REQUIREMENTS ANALYSIS

(CONT.)

» Ambiguities and contradictions:

must be identified

resolved by discussions with the customers.

» Next, requirements are organized:

into a Software Requirements Specification (SRS)
document.



DESIGN

» Design phase transforms
requirements specification:

into a form suitable for implementation
in some programming language.



DESIGN

» High-level design:

decompose the system into modules,

represent invocation relationships among the modules.

» Detailed design:

different modules designed in greater detail:

data structures and algorithms for each module are designed.



IMPLEMENTATION

» During the implementation phase:
each module of the design is coded,
each module is unit tested

tested independently as a stand alone unit, and
debugged



IMPLEMENTATION (con,)

» The purpose of unit testing:
test if individual modules work correctly.
» The end product of implementation phase:

a set of program modules that have been
tested individually.



INTEGRATION AND SYSTEM
TESTING

» Different modules are integrated in a planned manner:
modules are almost never integrated in one shot.

Normally integration is carried out through a number of
steps.

» During each integration step,
the partially integrated system is tested.



INTEGRATION AND SYSTEM

TESTING




SYSTEM TESTING

» After all the modules have been successfully
integrated and tested:

system testing is carried out.

» Goal of system testing:

ensure that the developed system functions
according to i1ts requirements as specified

1n the SRS document.




MAINTENANCE

» Maintenance of any software product:

requires much more effort than the effort
to develop the product itself.

development effort to maintenance effort
is typically 40:60.



MAINTENANCE (cont,)

» Preventive maintenance

Making appropriate changes to prevent the occurrence of
errors

» Corrective maintenance

Correct errors which were not discovered during the product
development phases

» Perfective maintenance

Improve implementation of the system

enhance functionalities of the system

» Adaptive maintenance

Port software to a hew environment



SUMMARY

» A software life cycle model (or process model):
a descriptive and diagrammatic model of software life cycle
identifies all the activities required for product development,

establishes a precedence ordering among the different
activities
divides life cycle into phases.

» A fundamental necessity while developing any large software
product:

Adoption of a software development life cycle model

(software process model).



