
Grid�based Navigation for Mobile

Robots

Tucker Balch

� Mobile Robots� Navigate�

Navigation is a special task for mobile robots� after all� isn�t getting somewhere
what being mobile is all about� And getting somewhere in a complex environ�
ment means navigation� You may not have given much thought to how you
manage to walk across a crowded parking lot� but programming a robot to do
the same thing is challenging� Coordinating sensor and motor skills are not the
least of the problems� but we�ll leave those issues for others to solve for now�
This article will examine path planning� how a robot can select a path to a goal�

There�s a section on equipment your robot will need to navigate and a
step�by�step explanation of how to implement an e�cient cost�based algorithm�
Tested C source code is included� it�s also available by ftp �see the end of the
article for ftp information	�

� What A Robot Needs to Navigate

There are a few capabilities a robot must have to navigate� Most importantly it
must have some way of sensing where it is supposed to go� This informationmay
be provided by an infrared beacon at the goal� it might be an �x� y	 coordinate�
or if the robot is equipped with a positional sensor like GPS� a point on the
earth�s surface de
ned by latitude and longitude� It is also important for the
robot to know where it is in relation to the goal� I�ll assume this information is
available and that it has been converted into cartesian coordinates� The robot�s
location is given by �robot�x� robot�y� and the goal is �goal�x� goal�y��

You might be wondering how accurate these values need to be� It depends� If
your robot directly senses the goal as it moves about� homing on an IR beacon
for instance� the values can be somewhat coarse� The accuracy of this type
of sensory information does not degrade over time� On the other hand� if the
robot depends on internal sensors for position� using timing or shaft encoders for
instance� the data must be more precise� As the robot moves about its estimate
of position will get worse and worse with this type of sensor� In the end you�ll

�

have to experiment with your particular robot to see if its position sensors are
good enough�

Next� the robot must be able to detect obstacles� Sonar range sensors�
infrared proximity sensors and laser ranging devices are all excellent� but a
good old bump sensor works just
ne�

Last is the issue of computing power and memory� The code listings here
were implemented and tested on a Unix system with lots of memory� I realize
many robots are running around with a ��� and only ��� bytes of RAM�
There�s no reason the code shouldn�t work on a ��� �provided you have a
compiler	� but you�ll probably need at least ��K of RAM� The code is in C� but
translation to assembly� BASIC� or other languages should be straight forward�
Just remember� grid�based path planners are traditionally compact in code� but
fat in RAM�

Now on to path planning�

� Representation for Navigation

Lots of approaches to robot path planning have been proposed and implemented�
An important distinction between them is in how they represent the world�
�Representation� refers to how the data is stored in a computer�s memory and
how that corresponds to objects in the outside world� In this article� we�ll look
at one type of grid�based representation� A good reference for information on
other approaches is the book Robot Motion Planning� by Jean�Claude Latombe�
He covers this approach� and others� in great detail�

With respect to navigation� the world consists of open areas� where a robot
may travel freely and closed areas �obstacles	 where the robot cannot travel�
We�ll represent these two types of space in a two�dimensional occupancy grid�
Each cell in the grid corresponds to a small section of the real world� The
occupancy grid is
lled in so that a cell is marked �empty� if the corresponding
part of the world is free space� and �full� if it contains an obstacle� Figure �
shows how an example scene is represented in an occupancy grid� Occupancy
grids are convenient for a robot to update when sensors indicate changes in the
world� They are also easy to use for planning� The primary disadvantage is
memory consumption� a high resolution map might require several megabytes�

The occupancy grid is usually read in from a
le at start�up time� But such
a map may not always be available� or even worse� it might be available but
wrong� Luckily� occupancy grids are easy to update if the robot discovers a
discrepancy� Suppose� for instance� that the robot discovers a new obstacle just
to the north of itself� Since north is in the �Y direction� the occupancy grid is
corrected like this�

occupancy�robot�x��robot�y � �� � FULL	

�

Robot

Chair

Table
Goal

Robot

Chair

Table
Goal (0,5) (7.5)

(9,9)

(0,0)

Figure �� How an example scene �left	 is represented in an occupancy grid
�right	� The black cells are �full� while the white ones are �empty�� Locations
of the goal and the robot are not usually stored in the occupancy grid� but here
they are colored gray for visualization purposes�

Similarly� if space to the east was previously thought to be occupied but
turns out to be free� the correction is made by�

occupancy�robot�x � ���robot�y� � EMPTY	

Note that changes in the occupancy grid will require a replanning step since
a new obstacle might obstruct the planned route� or newly discovered open space
might o�er a short cut�

One
nal issue regarding the occupancy grid is resolution� The grid�s res�
olution refers to how large an area in the real world is represented by one cell
in the grid� The example uses a � foot resolution on �� by �� foot grid �Fig�
ure �	� For most robot applications this resolution is too low� Low resolution
may lead to a less optimal path and jerky robot motion� The selection of a
resolution should depend on the accuracy of the robot�s position sensors� how
fast it will move and how much memory is available� In general� it is best to
use as high a resolution as possible since this will result in the most accurate
representation of obstacles and the �smoothest� plan� But there are reasons to
avoid too high a resolution� It doesn�t make sense� for instance� to use a higher
resolution than the precision of the robot�s position sensor� Also� if the robot
moves so quickly that it skips over several cells between computation cycles� the
resolution is probably too high� Finally� higher resolution maps will take longer
to plan over and use more space� A good starting point is to set the resolution
to the distance your robot will travel in one computation cycle�

� Representation of the Plan

The plan is a cost grid� Each cell in the grid is an estimate of the shortest
travel distance from that point to the goal� Usually the cost grid is the same

�

ltrc
Highlight

ltrc
Highlight

ltrc
Inserted Text
note this

���� ���� ���� ���� ���� ���� ���� ��		 ���� ����

���� ���� ���� ���� ���� ���� ���� ��		 ���� ����

���� ���� ���� BIG ���� ���� ���� ��		 ���� ����

�	� ��	� BIG BIG BIG BIG ���� ��		 ���� ����

��

�	�
��
 BIG BIG BIG ��		 	�		 ��		 ��		

�	��
 �	�	�
���
��� BIG BIG ���� ��		 ���� ����

�	���
��� ���� ���� BIG BIG ���� ��		 ���� ����

�	���
��� ���� ���� BIG BIG ���� ��		 ���� ����

��� ���� ���� ���� ���� ���� ���� ��		 ���� ����

�	���
��� ���� ���� ���� ���� ���� ��		 ���� ����

Figure �� The cost grid for the example navigation problem�

Figure �� The cost grid viewed as a three dimensional surface�

resolution as the occupancy grid� This makes referencing one while using the
other more convenient�

For the moment don�t worry about how cost cells are
lled in� You�ll see
how to do that in the next section� Look at Figure �� This is a cost grid for the
example in Figure �� Note that the cost at the goal cell is ���� and the cost at
other cells increases the further they are from the goal� To get a better idea of
what the cost grid looks like we can view a three dimensional surface generated
by plotting the cost at each point as a height� Figure � shows the plot for this
cost grid� The high spots on the plot are obstacles� The goal is at the low point
at the front right� You can see that following the plan is just like rolling a ball
down hill�

�

Figure �� This sequence shows how cost computation expands outwardly from
the goal� Initially �left	� only the cost at the goal is known� The other images�
from left to right� show the cells that have been evaluated after �� � and �
iterations�

� How the Cost Grid is Computed

As you may realize by now� the hard part is computing the cost grid� Recall
that the number in each cell is an estimate of the cost of traveling from that
cell to the goal�

First the program sets all the cells in the grid to initial values� Goal and
obstacle cells have constant values throughout the computation� Since the cost
of traveling from the goal to the goal is � the goal cell is always set to ���� Since
traveling through obstacles is not normally desired ��	 we discourage this by
setting the cost at obstacle cells to an arbitrarily large value called BIG�COST�
�Empty� cells are also initially set to BIG�COST� but lower values for them will
be computed later�

After setting the cells to initial values� the program repeatedly scans through
the grid looking for cells it can reset to lower values� The lower cost is computed
by looking at neighboring cells and using an estimate of travel cost from the
adjacent cells to the current cell� For laterally adjacent cells the estimate is
���� and for diagonally adjacent cells it�s

p
�� This is just the distance from the

center of one cell to the center of the next� assuming each cell measures one
unit on a side� Note that if the cost estimates were multiplied by the resolution
of the grid the values at each cell would re�ect the true distance to the goal�
At each sweep through the grid one more layer of cells is re�evaluated until�
eventually� the entire grid is minimized� Figure � shows how the evaluation
spreads outwardly from the goal�

At heart of the planner is the procedure cell�cost�� �listing at end of
article	� cell�cost�� evaluates the cost at one cell by inspecting the cost of
each cell adjacent to it� For the neighboring cells� it adds appropriate lateral or
diagonal travel costs and notes the lowest value� That lowest value is recorded
in the current cell� cell�cost�� returns a � if there was no change in the cost�
� otherwise�

We now have all the pieces needed to build a cost�based grid path planner�
Here it is�

�

ltrc
Highlight

ltrc
Highlight

int count � �	

while �count
� ��

�

count � �	

for �i � �	 i GRID�SIZE��	 i���

�

for �j � �	 j GRID�SIZE��	 j���

�

count � count � cell�cost�i�j�	

�

�

�

Yes� that really is the entire planner� It repeatedly cycles through the grid
to recompute each cell�s cost until it makes a full pass with no changes� Now
for the bad news� as it stands� this planner is extremely ine�cient� If the grid
has N cells along each side� and we plan over a complicated map� it might cycle
through the grid N� times and make N� cell evaluations� This will use up a lot
of CPU cycles for a large grid� In a later section we�ll see how to make it faster�

� Using the Cost Grid as a Plan

Let�s look at how to employ the cost grid as a plan� Provided the robot knows
its own location� using the plan is as simple as

new�direction � check�plan�robot�x� robot�y�	

The function check�plan�� knows how to consult the cost grid and return
a heading for the robot� It looks at the region in the cost grid corresponding to
where the robot is in the world� Then it choses the direction along the shortest
path to the goal �i�e� �down hill� on the cost grid	�

To do this� check�plan�� looks at a sample of nearby cells to compute the
gradient at the position of the robot� The gradient is down hill on the cost grid�
X and Y components of the gradient are computed separately� then the atan���
function is used to convert them into a direction between � and ��� If one of the
nearby cells contains an obstacle� check�plan�� uses the direction towards the
lowest cost neighbor instead of using the gradient� This avoids jittering when
the robot is near obstacles�

� Pulling it All Together

A robot using a grid�based planner should follow a cycle of planning and acting
something like this�

�

�� Initialize variables and read the map�

�� Plan�

�� Check sensors to
nd robot position� goal and nearby obstacles�

�� Update map if sensors show a discrepancy�

�� If the map has changed� recompute the plan�

�� Check plan and initiate movement along shortest path�

�� Go to ��

This sequence is used in the C code below� But this program is just a
simulation until you replace the sensing and movement �stub� procedures with
appropriate subroutines for your hardware�

The program includes a procedure called readmap�� that will read a map of
obstacles into the occupancy grid and initialize the robot and goal locations� If
you want to use this capability� you can make a map of the environment in a
text
le using spaces for open space� the letter �O� for obstacles� the letter �G�
for the goal� and �R� for the robot� The example from Figure � can be coded in
a text
le as�

����������CR�

����������CR�

���O������CR�

��OOOO����CR�

R��OOO�G��CR�

����OO����CR�

����OO����CR�

����OO����CR�

����������CR�

����������CR�

The t symbol indicates a space� and � CR � indicates the end of a line�
If you run the program using this input
le� it will simulate moving the robot
from its initial location ��� �	 to the goal� �� �	� The resulting path is shown in
Figure �� If the computer on your robot cannot read
les� you�ll obviously have
to avoid using readmap���

Also� if you�d like� you can print out the cost grid using the function printcost��

	 Making it Faster

Earlier� I pointed out that the present routine for computing the cost grid is
ine�cient� For the example problem ���� cell evaluations are made� This means

�

(0,5) (7.5)

(9,9)

(0,0)

Figure �� A simulated robot navigates across the scene on the left� The resulting
path is shown on the right�

each cell in the �� by �� grid is evaluated �� times� It should really only be
necessary to evaluate each cell once� But if e�ciency is not important� you
might want to stick with the slower version since it is less complicated�

The main problem with the old planner is that cells are not evaluated in
an e�cient order� Let�s look a better way to order the evaluations� Consider
the
rst time a cell is evaluated� Recall that all the cells are initially set to
BIG�COST� If all the cells adjacent to the current cell contain BIG�COST as well�
there is no way the cell can be lowered� A cell should not be evaluated until after
one of its neighbors has been lowered� otherwise we�re wasting time� Initially�
the only cells with a low cost neighbor are the cells next to the goal� so they
should be evaluated
rst� Also� if we can be sure the
rst evaluation is correct�
there is no need to evaluate a cell again�

One way to do this is to arrange for cells to trigger the evaluation of neigh�
boring cells after their cost values have been lowered� To do this we keep a list�
called the open list� of cells whose cost has been lowered� It is automatically
sorted from lowest to highest using linked list routines� Cells are �popped� o�
the top of the list by a routine called expand��� After expand�� pops a cell o�
the list� it looks at each of the cell�s neighbors to determine if they have been
evaluated� Each cell that has not been evaluated is evaluated at that point�
then pushed onto the open list for later expansion� This ensures that the lowest
cost cells are expanded
rst�

The new planner works by
rst pushing the goal onto the open list� Next it
repeatedly pops cells o� the list and expands them until the open list is empty�
The computation eventually terminates since each cell is expanded only once
and cells outside the boundaries are not pushed onto the list�

This planner makes only � cell evaluations on the example problem� so it
runs about �� times as fast as the old planner for that case� In most situations

ltrc
Highlight

ltrc
Highlight

ltrc
Highlight

the faster planner will run N times faster where N is the number of cells along
one side of the grid� Due to space considerations� listings for fast version are
not not included below� but they are available by e�mail or ftp�

 Wrapping Up

There are ways to make an even faster grid�based planner� The A� �pronounced
�A star� with a long �a�	 algorithm works by only expanding nodes along
a direct path between the goal and the robot� D� �pronounced �dee star�	�
developed by Anthony Stentz at CMU� initially computes the grid as outlined
here� But D� keeps additional information so that when errors are found in
the map the plan can be corrected without recomputing the entire grid� For
dynamic or unknown situations D� is better since it does not require a complete
replanning step when errors are found�

If you�d rather not type in the program by hand� you can
nd it via anony�
mous ftp at ftp�cc�gatech�edu in the directory people�tucker�gridnav���

Another directory� gridnav��� contains the fast planner� Get all the
les from
one directory or the other� If you are familiar with tar and uncompress you
can grab gridnav�tar�Z to get them all at once� If you don�t have access to
ftp� send me e�mail indicating which version you want and I�ll e�mail the
les
back to you �tucker�cc�gatech�edu	� After you have the
les on your local
system� a simple make gridnav should compile it for you�

�� About the Author

Tucker Balch was born in Miami� Florida in ����� He received the B�S� Degree
from Georgia Tech in ��� and the M�S� Degree from U�C� Davis in ��� He
is currently pursuing a Ph�D� in Autonomous Robotics at Georgia Tech� From
��� to �� he supported research at the Lawrence Livermore National Labo�
ratory as a computer scientist� He entered the Air Force as a Pilot Candidate
in �� and completed
ghter training in ����� He now �ies F��� Eagles at the
Georgia Air National Guard�

His research interests include integration of deliberative planning and reac�
tive control� communication in multi�robot societies� and parallel algorithms for
robot navigation�

Tucker can be reached by e�mail at tucker�cc�gatech�edu � His world�
wide�web page is http���www�cc�gatech�edu��grads�b�Tucker�Balch �

References

��� Latombe� Jean�Claude� Robot Motion Planning� Kluwer Academic Publish�
ers� Boston� �����

�

��� Stentz� A�� �Optimal and e�cient path planning for partially�known envi�
ronments�� Proceedings ���� IEEE International Conference on Robotics

and Automation� p�������� vol��� �����

�� Source Code Listings

��

ltrc
Highlight

