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Abstract
This paper addresses the coupled tasks of construct-

ing a spatial representation of the environment with
a mobile robot using noisy sensors (sonar) and using
such a map to determine the robot's position. The map
is not meant to represent the actual spatial structure
of the environment so much as it is meant to repre-
sent the major structural components of what the robot
\sees". This can, in turn, be used to construct a model
of the physical objects in the environment. One prob-
lem with such an approach is that maintaining an ab-
solute coordinate system for the map is di�cult with-
out periodically calibrating the robot's position.

We demonstrate that in a suitable environment it
is possible to use sonar data to correct position and
orientation estimates on an ongoing basis. This is ac-
complished by incrementally constructing and updating
a model-based description of the acquired data. Given
coarse position estimates of the robot's location and
orientation, these can be re�ned to high accuracy us-
ing the stored map and a set of sonar readings from
a single position. This approach is then generalized
to allow global position estimation, where position and
orientation estimates may not be available.

We consider the accuracy of the method based on
a single sonar reading and illustrate its region of con-
vergence using empirical data.

1 Introduction
Despite their potential utility, complete a priori

maps of a mobile robot's environment are rarely avail-
able. Even when maps (such as architect's oor plans)
are available in a form that can be used, they often fail
to accurately portray the environment in a manner
consistent with typical robotic sensing devices. For
example, commonly-used sonar devices fail to detect
many �xtures and may \detect" many structures that
are not physically present (such as illusory walls in
corners). For these reasons, it is important for an au-
tonomous (mobile) robot to construct and maintain
a map of its novel environment in terms of its own
perceptual mechanisms.

Most simple devices for measuring position and dis-
tance are relative measurement tools (e.g. odometers).

�This paper appears in the Proceeding of the IEEE Inter-
national Conference on Robotics and Automation, San Diego,
CA, May 1994, pp. 1615-1621.

yThe authors gratefully acknowledge the �nancial support of
the Natural Sciences and Engineering Research Council.

Imperfect estimates of orientation, distance and veloc-
ity must be integrated over time and hence errors in
absolute pose (position and orientation [5]) accumu-
late disastrously with successive motions and make the
general problem of maintaining an accurate absolute
coordinate system very di�cult. For these reasons,
map construction and long-term localization are de-
pendent on the use of sensory data for recalibrating a
robot's sense of its own location within the environ-
ment.

Given approximate estimates of a robot's position
based on odometry and dead-reckoning, we show in
this paper how a geometric map can be constructed
and used for ongoing re-calibration. This approach
is then extended to allow global localization, where
the robot is not provided with any initial pose esti-
mate. Our construction is based on the use of stable
detectable structures of sizable spatial extent in the
environment and avoids intervention such as the place-
ment of beacons. Although the method is described
using sonar sensors, its applicability is not restricted
to this sensing modality. The fundamental issue is
that if the robot is able to sense its location accu-
rately within a familiar geometrically modeled region,
it can compensate for the cumulative errors that re-
sult from uncertainties in its movements as it travels
within and between regions.

Some other work in this area has involved the use of
Kalman �lters to track environmental features [7, 12].
Other approaches have relied on the calculation of a
transformation matrix to match observed signals and
to localize a robot [2, 6]. Leonard, Durrant-Whyte
and Cox incorporate a sonar model into their system
to anticipate sensor readings [7]. While this is not
necessary to perform the localization in this paper, it
does allow for dynamic map keeping by keeping track
of particular targets that may disappear or new ones
that may appear [8]. This is useful for environments
that change periodically, and could easily be adapted
into the system described in this paper (since it would
be independent of localization). The work described
here di�ers from previous work not only in the techni-
cal details of the algorithm, but also in its combined
ability to combine data from multiple readings in a
single computation, to exploit measurements that may
not arise only from simple reections, to dynamically
construct a map (shared by some existing approaches),
its strong convergence properties, the ability to per-
form global localization and in its investigation of the



region of convergence of the algorithm.
In this paper we begin by outlining the manner in

which a map can be constructed using dynamically
acquired sonar range data. We go on to show how
the re-calibration of pose estimates can be achieved
based on a single set of measurements. Finally, we
extend this to global localization and examine some
properties of the algorithm.

2 Environmental Models
We will consider here the case of two-dimensional

environmental modeling only. Line segments are used
to model collections of observations of the environ-
ment. Each segment can be thought of as represent-
ing a section of a wall or other obstacle although, in
fact, some linear collections of observations may not
correspond directly to existing structures. Line seg-
ment models for sonar use are appropriate given the
characteristics of simple threshold-based sonar sens-
ing [1, 3, 4], where even a small object will produce
a collection of measurements at similar distances that
are nearly linear in structure. (In fact, the measure-
ments from a single position are often arranged in the
form of circular arcs of low curvature [7]. For noisy
data these can be well approximated by line segments
with much less computational overhead than circular
models. Furthermore, when data from multiple posi-
tions is integrated the linear nature of indoor struc-
tures (walls) tends to dominate.) Raw sonar data ob-
tained from a robot with a rotatable ring of 12 Po-
laroid sonar transducers is used in the experiments
described below.

The construction of an environmental map entails
the following main steps:

1. Conversion of sonar time-of-ight readings into
distance measurements using simple thresholding.

2. Spatially clustering of groups of neighbouring un-
explained measurements. This serves to asso-
ciate measurements that may arise from the same
object (or interaction); disparate measurements
from the same object may be grouped subse-
quently.

3. Generation of line segments to represent data us-
ing a �tting procedure for each cluster combined
with a split-and-merge segmentation process.

4. Combination of new line segment models with ex-
isting models.

5. Detection of higher-level map features (for exam-
ple corners).

2.1 Clustering Algorithm
The �rst stage in describing a collection of data

points is to perform clustering using an adaptation of
the sphere-of-inuence graph [11, 4]. This technique
divides measurements into unconnected subsets which
are considered for independent modeling. This tech-
nique avoids a priori thresholds and has a complexity
of O(n logn), when n is the number of data points.

2.2 Fitting Line Segment Models to Data

Assigning line segment models to the data clusters
is done with a �t-split-merge strategy. It functions by
�tting lines to entire clusters of measurements (pro-
duced by the prior computation) and then recursively
subdividing the clusters to maximize a goodness-of-
�t measure (this is interleaved with a merging phase,
below). An a priori stopping criterion is needed to
prevent splitting of the clusters into excessively small
groups (in the worst case, two points each). After all
line segments have been �t, any that are close together
and co-linear are merged into a larger single line.

The coordinate-system independent line �tting al-
gorithm is based on a least mean squares �t using the
singular values (eigenvectors) of the covariance ma-
trix of the data [10]. This is analogous to �tting an
ellipse to the data and �nding the major and minor
axes which are, respectively, the directions of max-
imum and minimum variance. The best �t line is
described by the principal eigenvector (major axis),
while splitting is performed by subdivision (if neces-
sary) and is performed in the orthogonal direction.
The end points of the line segment are assigned so
that the smallest line segment is generated such that
all the data points for that line may perpendicularly
project onto it (a more comprehensive model includes
an estimate of the uncertainty in the sonar measure-
ments de�ning the end points of the line but is beyond
the scope of this paper).

When a cluster cannot support a single line seg-
ment of high enough line quality, it is split into two
parts and a line segment �t is attempted on each half.
There are two criteria for this decision. First, if the
�t ellipse is very elongated (where elongation is sim-
ply the ratio of eigenvalues of the covariance matrix
of the data [10]), then the cluster is line-shaped and
we do not wish to split it. Secondly, an extremely
long line segment may still have a signi�cant orthog-
onal variance. Relative to the line it may be small,
but in absolute terms it may be comparable in size
to the robot itself (i.e. more than just a few centime-
tres). Therefore, long lines warrant splitting just in
case this detail exists. If it does not and the data
is indeed shaped like a long line segment, then the
merging of line segments after the �tting process will
give this result (it also allows old models and mod-
els of new data to be combined when appropriate).
Taking both of these considerations into account al-
lows a decision to be made regarding the splitting of
clusters [4]. This process of selecting the minimum
number of su�ciently good lines is related to minimal
length encoding.

Figure 1 illustrates the results of the modeling pro-
cess in a simple environment. The area was scanned by
moving the robot around a square obstacle in the cen-
tre of a partially enclosed area (roughly 4 square me-
ters) along the indicated trajectory. The linear models
corresponding to major structures in the environment
(such as walls) are evident. In addition, line segments
can be observed modeling non-physical collections of
data points that correspond to artifacts of the sonar
measurement process. Not only is it is unnecessary
to discard these apparently spurious data, but they
prove to be valuable in modeling (this illustrates the



importance of deriving a map from the actual sensors
to be used rather than from a priori information).
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Figure 1: Modeling of Range Data with Line Seg-
ments. Dots are sonar measurements, thick lines are
inferred models, and the dotted line shows the path of
the robot when scanning the environment. The map
was constructed incrementally from various individual
scans rather than formed from this data point set as
a whole.

3 Localization
Precise localization, the process whereby a robot

can determine pose with respect to a mapped environ-
ment, is performed in several stages. We present an
approach to position re�nement (or localization) based
on an a priori coarse position estimate, and go on the
develop a global method from this. All stages assume
the existence of a map constructed by the method de-
scribed in section 2. The �rst stage, position correc-
tion, assumes an estimate of the robot's position is
available and that there is no error in the robot's ori-
entation. The pose estimation problem is formulated
as an optimization in terms of the extent to which
the map explains the observed measurements. Posi-
tion and orientation corrected simultaneously, given
an initial coarse estimate, is referred to as local pose
correction. Using the local pose corrector and an as-
sociated measure of quality-of-estimate (consistency
between map and measurements) allows global local-
ization (where the robot has no initial estimate of its
pose) to be formulated as a secondary optimization
problem.

3.1 Position Correction
As noted above, position correction assumes a

coarse initial position estimate is available, and es-
timates the correct position assuming the orientation
is known. There are two phases involved: 1) Clas-
si�cation of Data Points and 2) Weighted Voting of
Correction Vectors. The classi�cation stage entails ex-
amining sensed data points and classifying each to a
target line segment (i.e. the line segment most likely
representing the same object that the sensed data rep-
resents). The assumption is made that the closest line
segment to a given sensed data point is the most likely
target for that point [2]. The voting stage consists of
computing a vector di�erence between each point and
its target model and deriving a weighted sum of these
correction vectors to give an estimate of the robot's
true position. This process is then repeated until the
position can no longer be further re�ned.

3.1.1 Classi�cation of Data Points

The purpose of classi�cation is to match range data
points with models representing the most likely ob-
ject in the environment to which the sensor responded.
The target model of each point is that model to which
the point is closest (close in a Euclidean distance
sense). Assuming a small positional error, the data
points will not usually be too far away from the ob-
jects they represent. This is somewhat analogous to
the linearization of a system of non-linear equations
about an operating point. In this case, the operating
point is the roughly accurate position estimate.

From each data point and target line segment, we
obtain a correction vector : the vector di�erence be-
tween the data point and its perpendicular projection
onto the in�nite line passing through the line segment.
This vector represents the o�set required to exactly
match the point to the line through the model, i.e.
correct the error in that point. A combination of the
correction vectors from all the measurements used in
the position estimate provides the estimate of the re-
�ned position.

The one-dimensional position constraint (and hence
one-dimensional uncertainty) provided by each mea-
surement derives from the geometric constraint (or
lack of constraint) that derives from matching to a
one dimensional (line) model (if fact, there is a weak
constraint in the orthogonal direction but we will omit
it here in the interest of clarity). This problem which
manifests itself in this context as the long hallway ef-
fect, is analogous to the aperture problem in motion
estimation [9]. Observation of position (or motion) of
a section of a straight line provides information only in
the direction of the normal to the line (akin to normal
ow in motion estimation). In practice, a robot in the
middle of a long hallway (such that it cannot see the
ends) can only correct its position in the direction per-
pendicular to the main axis of the hallway. Movement
along the axis of the hallway gives no displacement
information since all parts of the walls look identi-
cal, and therefore cannot be distinguished in order to
calculate a displacement. In practice, Kalman �lter-
ing can be used in such situations to combine dead-
reckoning information with sensory input [7].
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3.1.2 Weighted Voting of Correction Vectors

The individual correction vectors cannot be simply
summed together to form an overall error vector {
some kind of weighting is required. If we consider
each correction vector as (�xi;�yi), then the overall
error vector (�X;�Y ) can be calculated as follows:

�X =

Pn

i=1 !(di)�xiPn

i=1 !(di)
(1)

�Y =

Pn

i=1
!(di)�yiPn

i=1 !(di)
(2)

where

!(d) = 1�
dm

dm + cm
; a sigmoid function (3)

di is the distance between the ith range data point and
its target line segment (not necessarily the distance to
the in�nite line through the target). A sigmoid func-
tion has values close to unity for short vectors, and
approaching zero for long vectors, with a smooth tran-
sition in between governed by the value of c in equa-
tion 3, with the e�ect of weighting short vectors higher
than long vectors. This \soft-nonlinearity" serves to
reject outliers and ensures that points close to their
target line segments have a greater voting strength in
the overall error vector.

3.2 Convergence of the Estimate
In general, the classi�cation and weighted sum-

mation operations must be performed iteratively, in-
crementally correcting the robot's position estimate.
This is due to the interdependence of the solutions
to the classi�cation and estimation procedures: ac-
curate estimation depends on accurately associating
measurements and map information. As the position
estimate for the robot changes, the point-target cor-
respondences can vary substantially. Not all points
may be properly classi�ed initially, but only a few
are needed to start moving the position estimate in
the right direction; incorrect correspondences tend to
be randomly distributed and hence are readily out-
weighed by correct ones. To aid in the accuracy and
convergence of process, the value of c in equation 3 is
decreased as the iterations proceed. This allows many
measurements to participate in making a initial pose
estimate while �nal position re�nement is dependent
only of measurements that are almost certain to be
correctly attributed to known models. This coarse-
to-�ne strategy provides progressive shift in emphasis
from coarse detection of an attractor to accurate esti-
mation.

4 Local Correction Results
In order to illustrate the region of convergence from

incorrect position estimates to an accurate estimate,
a representative experiment using initial position es-
timates whose error ranged up to 300 cm (10 feet) in
both the x and y directions from the robot's actual
position is described using position correction.

Actual positions were measured manually to within
one-half centimeter using a tiled grid on the oor of the

test area. Figure 2 shows the convergence of the po-
sition estimates as a function of initial position. Each
line connects an initial estimate (small circles cover-
ing the map) to a �nal estimate. The true robot po-
sition is in the center of the map (where many solu-
tions converge). Figure 3 shows more clearly the re-
gion around the true location for which the estimated
robot position converges correctly. For example, any
initial estimate in the upper-left or within one meter
of the true position converges to the correct solution
The other initial estimates do not converge correctly
due to incorrectly classi�ed measurements. \Correct
convergence" for this �gure is de�ned as a �nal posi-
tion error of less than 3 cm. Position estimation
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Figure 2: Paths of convergence, shown by lines orig-
inating initial position estimates (circles) leading to
�nal position estimates. The true robot position is in
the center of the rectangle.
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Figure 3: Initial Position Estimates that Converge to
the Correct Position of the Robot (circles indicate suc-
cessful convergence within 3cm of true position). The
�lled dot in the centre is the correct position.

ltrc
Highlight



errors after convergence generally tend to be on the
order of 5 cm or less in moderately well structured
environments such as the o�ce space depicted earlier.

The most common source of error aside from poorly
�t models (due to sparse and/or noisy data) is the
\hallway e�ect" previously mentioned, where there
may be insu�cient structure to correctly estimate the
position along some orientation. (As noted above, in-
tegrating odometry with sensor-based estimation can
often deal with this in practice.)

5 Quality Measures
As shown, it is possible that the outcome of position

correction is not the correct position of the robot. To
provide for this, we need a function that will indicate if
the �nal calculated pose is probable; in short, to esti-
mate the extent to which correspondence between the
measurements and the map exceeds chance. We would
also like to be able to compare multiple solutions in
terms of explanatory power.

There are three basic estimators used here: the
mean-squared error measure, the classi�cation factor ,
and the comparative quality measure (which is a com-
bination of the other two).

The mean-squared error measure is straight-
forward:

Emse =
1

n

nX
i=1

(dist(pi; `i))
2 (4)

where pi is ith of n range data points, `i is pi's target
line segment model, and dist(p; `) is the distance from
a point p to the closest point on the line segment `.

This function is locally suitable since its global min-
imum indeed occurs at the true pose of the robot (this
is akin to not providing false negatives). At this true
pose, it is assumed that all or at least the vast major-
ity of range data points are very close to their target
models, thus yielding a low value for a correct solution.

There is a di�culty with this function used in iso-
lation: it is susceptible to outliers, and these will cer-
tainly e�ect the results even if the pose estimate is very
accurate. Since it is not known how many outliers are
in the sonar data set, the possible range of values is
very broad, and this makes deciding whether a sin-
gle pose is valid is very di�cult based on this function
alone. However, it is useful when used to compare two
alternative solutions.

The Classi�cation Factor is a quantity based on the
fraction of all data points that are well explained . This
is obtained by computing the fraction of all data points
that are within some �xed distance threshold x of their
associated model. Under the assumption that models
occupy only a small fraction of the environment, close
associations between measurements and models will
occur only rarely by chance. This measure can this
indicate how good our pose estimate is. The only way
to obtain a value approaching unity is when the pose
estimate is very close to the actual one, or to be in part
of the environment that is very similar to the one in
which the robot is located. Ignoring the latter, this
measure should then give a value close to unity when
the position estimate is very close to the true position,
and near zero when the error of the estimate is large.

Using an abrupt, step-like neighborhood threshold
has several shortcomings, in particular unstable be-
havior as errors exceed the threshold value. To ad-
dress this, a \soft" sigmoid non-linearity is used for
the threshold function assuring graceful degradation
of the solution as a function of the input error. The
classi�cation factor is thus de�ned as (see �gure 4):

Ecf =
1

n

nX
i=1

(1 �
dm

dm + cm
) (5)

where: d = dist(pi,`i)
c = neighborhood size
m = sigmoid steepness

The neighborhood should not be too small to acco-
modate innacuracies in the models and should depend
on sensor error (in practice, we use a value of about 5
cm.). Figure 4 illustrates Ecf in the same environment
as the previous �gures.
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Figure 4: The Classi�cation Factor Ecf

At the actual robot position
(again, (x,y,�)=(300,300,0)), we see the global max-
imum that approaches very closely to unity, and is
much less everywhere else. The very useful property
of Ecf is that the range is limited to a value between
0 and 1, and this allows for a simple test to be made
for the likelihood of a convergence being good or bad,
such as a threshold. Through experimentation, a good
working threshold was found to be about 0.6; so we
expect at least 60% of all points should be within some
distance of their targets (for us, about 10cm).

One problem with Ecf is that it is not as useful as
Emse when dealing with very �ne di�erences in robot
position. Since it in essence just counts the number of
points within a neighborhood, it cannot give precise
detail within that neighborhood. For this reason, Ecf

alone is not used as a comparativemeasure. Emse does
not su�er from this, as it deals with actual distances.

While it quite possible to use Ecf for pass/fail deci-
sions, and Emse for comparative quality, using a com-
bination of the two can make the indication of the true
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pose more pronounced. The comparative quality mea-
sure (Ecqm) is such a combination, de�ned as follows:

Ecqm =
(Ecf )a

(Emse)b
(6)

where a and b are factors which weight Ecf and Emse

relative to each other. In this way, Ecf acts as a non-
linear scaling factor applied to the inverse of Emse.
Figure 5 shows Ecqm in the same environment as �g-
ures 1 and 4. This time the true robot position at the
central peak is more pronounced with respect to the
surrounding positions, and is in fact decades higher in
magnitude than neighboring regions.
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Figure 5: The Comparative Quality Measure (Ecqm);
a=2, b=1

6 Orientation Correction
The approach to orientation correction is based

on the two quality measures, the classi�cation fac-
tor Ecf and the comparative quality measure Ecqm.
Consider �gure 6: Near the true orientation (an an-
gle deviation/error of 0�), Ecqm and Ecf are rather
well-behaved convex functions of angle deviation �d.
Therefore, if the estimate of the robot's position is
close enough, then the proper orientation of the robot
can be found by maximizing Ecqm. Since we know a
given pose estimate is good ifEcf exceeds some thresh-
old, we can tell when the estimate is good enough to
ensure that Ecqm is a well-de�ned, single-peak func-
tion. Figure 6 shows that both orientation and posi-
tion must be correct in order to optimize the quality
measures. It also shows that they are convex func-
tions only for pose estimates local to the true pose, so
gradient searches to �nd a global maximum will only
work in this region. However, the angle domain that
bounds this convexity are not constant for all poses
in all environments. Therefore, it is useful to use a
modi�ed Ecqm, which we call Êcqm, de�ned as:

Êcqm =

�
Ecqm if Ecf � Acceptance Threshold
0 otherwise

(7)
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Figure 6: Variations in Quality Measures as functions
of Angle Deviation: the true robot orientation is at
an angle deviation of 0�. The solid line represents the
quality measures at true robot position and varying
orientation, while the broken line represents the qual-
ity at an incorrect position (about 100 cm away).

Thus, once we have a good position estimate (from
position correction) and a relatively small error in ori-
entation, we can correct the angle error by optimizing
Êcqm: if Êcqm = 0, then we know right away that our
local pose estimate is too poor to correct orientation.

Now we have the tools to formulate a complete lo-
calization algorithm when given a pose estimate:

1. Do position correction as before, except that each
iteration, check Ecf to see if it exceeds the accep-
tance threshold.

2. If Ecf > threshold, then the pose estimate is close

enough to be corrected. Maximize Êcqm as a func-
tion of angle deviation �d by using a maximization
technique such as Brent's method. Direct gradi-
ent descent methods may also be used if derivative
information is approximated.

3. Once the maximum is found, update the orienta-
tion estimate �, and reiterate.

4. For speed purposes, if � changes very little over
the course of a few iterations, ignore future ori-
entation corrections and concentrate on re�ning
position.



6.1 Global Localization
Global localization refers to the case where we have

a map of the environment, but no prior estimate of the
robot's pose. To use the localization algorithm devel-
oped thus far, a initial pose estimate is required. We
describe a localization procedure based on the local
pose estimator that does not require an initial pose
estimate. This is done in a similar fashion to the man-
ner in which position correction was incorporated into
orientation correction: by optimization of the quality
measures.

The pose of the robot within the environment can
be considered as the domain of a quality function
Ecqm(x; y; �). Each pose (x; y; �) within the map re-
gion is considered an initial pose estimate of the robot.
Ecqm may be calculated following local pose localiza-
tion at one of these initial poses. This gives a global
quality function that describes the quality of localiza-
tion when applied to a particular location, and the
resulting pose for which Ecqm is a global maximum
(not the initial pose) is the true pose of the robot.
This results in a highly non-convex function (although
convex local to the global maximum) because any esti-
mate that converges closely to the true pose will have
a high quality, and any that do not will have a much
lower quality. Therefore, local gradient information in
the lower valued regions may not assist in the search
for the global maximum. However, maximization is
still possible by exhaustive search or other non-convex
maximization techniques.

7 Discussion and Conclusions
This paper presents a geometric method to gener-

ate maps from sonar data and to perform localization
based on a line segment map of obstacles that need
not be individually identi�ed. Individual sonar data
were classi�ed using a weighted soft non-linearity that
combined robustness with graceful degradation.

Given maps of this construction, this paper ad-
dressed localization in terms of hierarchical techniques
for position-only localization, local pose localization
(re�ning both position and orientation), and global lo-
calization. The choice of which of these is required de-
pends on the assumptions that could be made within a
given environment and with a given robot and sensor.

Even using position-only localization (which as-
sumes no orientation error) performance was very
good for the range of position errors likely to be en-
countered in practice, small errors in actual orienta-
tion and for o�ce-like environments. General pose
localization is more robust since orientation is also
corrected { this is most appropriate to typical op-
erations. Global localization, while more computa-
tionally costly, is required if no pose estimates are
available. This can arise when a system has been
powered-down or when external inuence leads to a
large positional errors. In areas where insu�cient en-
vironmental structure is observable practical systems
would normally make use of dead-reckoning informa-
tion as well.
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