Programming Languages and Compiler Design

Programming Language Semantics Compiler Design Techniques

Yassine Lakhnech \& Laurent Mounier

\{lakhnech,mounier\}@imag.fr
http://www-verimag.imag.fr/lakhnech
http://www-verimag.imag.fr/ mounier.

Master of Sciences in Informatics at Grenoble (MoSIG)
Grenoble Universités
(Université Joseph Fourier, Grenoble INP)

Code Optimization

- give some indications on general optimization techniques:
- data-flow analysis
- register allocation
- software pipelining
- etc.
- describe the main data structures used:
- control flow graph
- intermediate code (e.g., 3-address code)
- Static Single Assignment form (SSA)
- etc.
- see some concrete examples

But not a complete panorama of the whole optimization process

(e.g.: a real compiler, for a modern processor)

Objective of the optimization phase

Improve the efficiency of the target code, while preserving the source semantics.
efficiency \rightarrow several (antagonist) criteria

- execution time
- size
- memory used
- energy consumption
- etc.
\Rightarrow no optimal solution, no general algorithm
\Rightarrow a bunch of optimization techniques:
- inter-dependant each others
- sometimes heuristic based

Two kinds of optimizations

Independant from the target machine
"source level" or "assembly level" pgm transformations:

- dead code elimination
- constant propagation, constant folding
- code motion
- common subexpressions elimination
- etc.

Dependant from the target machine
optimize the use of the hardware resources:

- machine instruction
- memory hierarchy (registers, cache, pipeline, etc.)
- etc.

Overview

1. Introduction
2. Some optimizations independant from the target machine
3. Some optimizations dependant from the target machine

Some optimizations independant from the target machine

Main principle

Input: initial intermediate code
Output: optimized intermediate code

Several steps:

1. generation of a control flow graph (CFG)
2. analysis of the CFG
3. transformation of the CFG
4. generation of the output code

Intraprocedural 3-address code (TAC)

"high-level" assembly code:

- binary logic and arithmetic operators
- use of temporary memory location ti
- assignments to variables, temporary locations
- a label is assigned to each instruction
- conditional jumps goto

Examples:

- l: x := y op x
- l: x := op y
- l: x := y
- l: goto l'
- l: if x oprel y goto l^{\prime}

Basic block (BB)

A maximal instruction sequence $S=i_{1} \cdots i_{n}$ such that:

- S execution is never "broken" by a jump \Rightarrow no goto instruction in $i_{1} \cdots i_{n-1}$
- S execution cannot start somewhere in the middle \Rightarrow no label in $i_{2} \cdots i_{n}$
\Rightarrow execution of a basic bloc is atomic
Partition of a 3-address code BBs:

1. computation of Basic Block heads:

1st inst., inst. target of a jump, inst. following a jump
2. computation of Basic Block tails:
last inst, inst. before a Basic Block head
\Rightarrow a single traversal of the TAC

Control Flow Graph (CFG)

A representation of how the execution may progress inside the TAC
\rightarrow a graph (V, E) such that:
$V=\left\{B_{i} \mid B_{i}\right.$ is a basic block $\}$
$E=\left\{\left(B_{i}, B_{j}\right) \mid\right.$
"last inst. of B_{i} is a jump to 1 st inst of B_{j} " \vee " 1 st inst of B_{j} follows last inst of B_{i} in the TAC" $\}$

Example

Give the Basic Blocks and CFG associated to the following TAC sequence:

```
0. x := 1
1. y := 2
2. if c goto 6
3. x := x+1
4. z := 4
5. goto 8
```


Optimizations performed on the CFG

Two levels:

Local optimizations:

- computed inside each BB
- BBs are transformed independent each others

Global optimizations:

- computed on the CFG
- transformation of the CFG:
- code motion between BBs
- transformation of BBs
- modification of the CFG edges
- algebraic simplification, strength reduction
\rightarrow replace costly computations by less expensive ones
- copy propagation
\rightarrow suppress useless variables
(i.e., equal to another one, or equal to a constant)
- constant folding
\rightarrow perform operations between constants
- common subexpressions
\rightarrow suppress duplicate computations
(already computed before)
- dead code elimination \rightarrow suppress useless instructions (which do not influence pgm execution)

Example of local optimizations

Initial code:
$\mathrm{a}:=\mathrm{x} \star \star 2$
$\mathrm{~b}:=3$
$\mathrm{c}:=\mathrm{x}$
$\mathrm{d}:=\mathrm{c} * \mathrm{c}$
$\mathrm{e}:=\mathrm{b} \star 2$
$\mathrm{f}:=\mathrm{a}+\mathrm{d}$
$\mathrm{g}:=\mathrm{e} \star \mathrm{f}$

Example of local optimizations

Algebraic simplification:

$\mathrm{a}:=\mathrm{x} * * 2$	$\mathrm{a}:=\mathrm{x} * \mathrm{x}$
$\mathrm{b}:=3$	$\mathrm{~b}:=3$
$\mathrm{c}:=\mathrm{x}$	$\mathrm{c}:=\mathrm{x}$
$\mathrm{d}:=\mathrm{c} * \mathrm{c}$	$\mathrm{d}:=\mathrm{c} * \mathrm{c}$
$\mathrm{e}:=\mathrm{b} * 2$	$\mathrm{e}:=\mathrm{b} \ll 1$
$\mathrm{f}:=\mathrm{a}+\mathrm{d}$	$\mathrm{f}:=\mathrm{a}+\mathrm{d}$
$\mathrm{g}:=\mathrm{e} * \mathrm{f}$	$\mathrm{g}:=\mathrm{e} * \mathrm{f}$

Example of local optimizations

Copies propagation:

$\mathrm{a}:=\mathrm{x} \star \mathrm{x}$	$\mathrm{a}:=\mathrm{x} \star \mathrm{x}$
$\mathrm{b}:=3$	$\mathrm{~b}:=3$
$\mathrm{c}:=\mathrm{x}$	$\mathrm{c}:=\mathrm{x}$
$\mathrm{d}:=\mathrm{c} * \mathrm{c}$	$\mathrm{d}:=\mathrm{x} \star \mathrm{x}$
$\mathrm{e}:=\mathrm{b} \ll 1$	$\mathrm{e}:=3 \ll 1$
$\mathrm{f}:=\mathrm{a}+\mathrm{d}$	$\mathrm{f}:=\mathrm{a}+\mathrm{d}$
$\mathrm{g}:=\mathrm{e} \star \mathrm{f}$	$\mathrm{g}:=\mathrm{e} \star \mathrm{f}$

Example of local optimizations

Constant folding:

$\mathrm{a}:=\mathrm{x} * \mathrm{x}$	$\mathrm{a}:=\mathrm{x} * \mathrm{x}$
$\mathrm{b}:=3$	$\mathrm{~b}:=3$
$\mathrm{c}:=\mathrm{x}$	$\mathrm{c}:=\mathrm{x}$
$\mathrm{d}:=\mathrm{x} * \mathrm{x}$	$\mathrm{d}:=\mathrm{x} * \mathrm{x}$
$\mathrm{e}:=3 \ll 1$	$\mathrm{e}:=6$
$\mathrm{f}:=\mathrm{a}+\mathrm{d}$	$\mathrm{f}:=\mathrm{a}+\mathrm{d}$
$\mathrm{g}:=\mathrm{e} * \mathrm{f}$	$\mathrm{g}:=\mathrm{e} * \mathrm{f}$

Example of local optimizations

Elimination of common subexpressions:

$\mathrm{a}:=\mathrm{x} * \mathrm{x}$	$\mathrm{a}:=\mathrm{x} * \mathrm{x}$
$\mathrm{b}:=3$	$\mathrm{~b}:=3$
$\mathrm{c}:=\mathrm{x}$	$\mathrm{c}:=\mathrm{x}$
$\mathrm{d}:=\mathrm{x} * \mathrm{x}$	$\mathrm{d}:=\mathrm{a}$
$\mathrm{e}:=6$	$\mathrm{e}:=6$
$\mathrm{f}:=\mathrm{a}+\mathrm{d}$	$\mathrm{f}:=\mathrm{a}+\mathrm{d}$
$\mathrm{g}:=\mathrm{e} * \mathrm{f}$	$\mathrm{g}:=\mathrm{e} * \mathrm{f}$

Example of local optimizations

Copies propagation:

$\mathrm{a}:=\mathrm{x} * \mathrm{x}$	$\mathrm{a}:=\mathrm{x} * \mathrm{x}$
$\mathrm{b}:=3$	$\mathrm{~b}:=3$
$\mathrm{c}:=\mathrm{x}$	$\mathrm{c}:=\mathrm{x}$
$\mathrm{d}:=\mathrm{a}$	$\mathrm{d}:=\mathrm{a}$
$\mathrm{e}:=6$	$\mathrm{e}:=6$
$\mathrm{f}:=\mathrm{a}+\mathrm{d}$	$\mathrm{f}:=\mathrm{a}+\mathrm{a}$
$\mathrm{g}:=\mathrm{e} * \mathrm{f}$	$\mathrm{g}:=6 \star \mathrm{f}$

Example of local optimizations

Dead code elimination (+ strength reduction):

$\mathrm{a}:=\mathrm{x} * \mathrm{x}$	$\mathrm{a}:=\mathrm{x} * \mathrm{x}$	$\mathrm{a}:=\mathrm{x} \star \mathrm{x}$
$\mathrm{b}:=3$		
$\mathrm{c}:=\mathrm{x}$		
$\mathrm{d}:=\mathrm{a}$		
$\mathrm{e}:=6$	$\mathrm{f}:=\mathrm{a}+\mathrm{a}$	$\mathrm{f}:=\mathrm{a} \ll 1$
$\mathrm{f}:=\mathrm{a}+\mathrm{a}$	$\mathrm{g}:=6 \star \mathrm{f}$	$\mathrm{g}:=6 \star \mathrm{f}$

Local optimization: a more concrete example

Inital source program: addition of matrices

```
for (i=0 ; i < 10 ; i ++)
    for (j=0 ; j < 10 ; j++)
    S[i,j] := A[i,j] + B[i,j]
```

Basic blocks:

B1:	$i:=0$
B2:	if $i>10$ goto B7
B3:	$j:=0$
B4:	if $j>10$ goto B6
B5	
B6:	$i:=i+1$
	goto B2
B7: end	

Control Flow Graph

Inital Block B5

B5: t1 := 4^{*} i

$$
\begin{aligned}
\mathrm{t} 2 & :=40 * \mathrm{j} \\
\mathrm{t} 3 & :=\mathrm{t} 1+\mathrm{t} 2 \\
\mathrm{t} 4 & :=\mathrm{A}[\mathrm{t} 3] \\
\mathrm{t} 5 & :=4^{*} \mathrm{i} \\
\mathrm{t} 6 & :=40 * \mathrm{j} \\
\mathrm{t} 7 & :=\mathrm{t} 5+\mathrm{t} 6
\end{aligned}
$$

t8 := B[t7]
t9 := t4 + t8
$\mathrm{t} 10:=4$ * i
$\mathrm{t} 11:=40$ * j
$\mathrm{t} 12:=\mathrm{t} 10+\mathrm{t} 11$
S[t12]:= t9
j := j + 1
goto B4

Optimization of B5 (1/4)

$$
\begin{aligned}
\mathrm{B} 5: & \mathrm{t} 1:=4 * \mathrm{i} \\
\mathrm{t} 2 & :=40^{*} \mathrm{j} \\
\mathrm{t} 3 & :=\mathrm{t} 1+\mathrm{t} 2 \\
\mathrm{t} 4 & :=\mathrm{A}[\mathrm{t} 3] \\
\mathrm{t} 5 & :=4 * \mathrm{i} \\
\mathrm{t} 6 & :=40^{*} \mathrm{j} \\
\mathrm{t} 7 & :=\mathrm{t} 5+\mathrm{t} 6
\end{aligned}
$$

t8 := B[t7]
t9 := t4 + t8

$$
\begin{aligned}
& \mathrm{t} 10:=4^{*} \mathrm{i} \\
& \mathrm{t} 11:=40 \text { * } \mathrm{j}
\end{aligned}
$$

$$
\mathrm{t} 12:=\mathrm{t} 10+\mathrm{t} 11
$$

$$
\mathrm{S}[\mathrm{t} 12]:=\mathrm{t} 9
$$

$$
j:=j+1
$$

goto B4

A same value is assigned to temporary locations $t 1, \mathrm{t} 5, \mathrm{t} 10$

Optimization of B5 (2/4)

B5: t1:=4*i

$$
\begin{aligned}
& \mathrm{t} 2:=40^{*} \mathrm{j} \\
& \mathrm{t} 3:=\mathrm{t} 1+\mathrm{t} 2 \\
& \mathrm{t} 4:=\mathrm{A}[\mathrm{t} 3] \\
& \mathrm{t} 6:=40^{*} \mathrm{j} \\
& \mathrm{t} 7:=\mathrm{t} 1+\mathrm{t} 6
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{t} 8:=\mathrm{B}[\mathrm{t} 7] \\
& \mathrm{t} 9:=\mathrm{t} 4+\mathrm{t} 8 \\
& \hline \mathrm{t} 11:=40 * \mathrm{j} \\
& \mathrm{t} 12:=\mathrm{t} 1+\mathrm{t} 11 \\
& \mathrm{~S}[\mathrm{t} 12]:=\mathrm{t} 9 \\
& \mathrm{j}:=\mathrm{j}+1 \\
& \text { goto } \mathrm{B} 4
\end{aligned}
$$

A same value is assigned to temporary locations $\mathrm{t} 2, \mathrm{t} 6, \mathrm{t} 11$

Optimization of B5 (3/4)

B5: t1 := 4^{*} i

$$
\begin{aligned}
& \mathrm{t} 2:=40^{*} \mathrm{j} \\
& \mathrm{t} 3:=\mathrm{t} 1+\mathrm{t} 2 \\
& \mathrm{t} 4:=\mathrm{A}[\mathrm{t} 3] \\
& \mathrm{t} 7:=\mathrm{t} 1+\mathrm{t} 2 \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{t} 8:=\mathrm{B}[\mathrm{t} 7] \\
& \mathrm{t} 9:=\mathrm{t} 4+\mathrm{t} 8 \\
& \mathrm{t} 12:=\mathrm{t} 1+\mathrm{t} 2 \\
& \mathrm{~S}[\mathrm{t} 12]:=\mathrm{t} 9 \\
& \mathrm{j}:=\mathrm{j}+1 \\
& \text { goto B4 }
\end{aligned}
$$

A same value is assigned to temporary locations $\mathrm{t} 3, \mathrm{t} 7, \mathrm{t} 12$

Optimization of B5 (4/4): the final code obtained

B5: t1:=4*i
t2 : $=40$ * j
$\mathrm{t} 3:=\mathrm{t} 1+\mathrm{t} 2$
$\mathrm{t} 4:=\mathrm{A}[\mathrm{t} 3]$
t8:= B[t3]
t9:= t4 + t8
$\mathrm{S}[\mathrm{t} 3]:=\mathrm{t} 9$
$\mathrm{j}:=\mathrm{j}+1$
goto B4

Global optimizations

Global optimization: the principle

Typical examples of global optimizations:

- constant propagation trough several basic blocks
- elimination of global redundancies
- code motion: move invariant computations outside loops
- dead code elimination

How to "extrapolate" local optimizations to the whole CFG?

1. associate (local) properties to entry/exit points of BBs
(set of active variables, set of available expressions, etc.)
2. propagate them along CFG paths
\rightarrow enforce consistency w.r.t. the CFG structure
3. update each BB (and CFG edges) according to these global properties
\Rightarrow a possible technique: data-flow analysis

Data-flow analysis

Static computation of data related properties of programs

- (local) properties φ_{i} associated to some pgm locations i
- set of data-flow equations:
\rightarrow how φ_{i} are transformed along pgm execution
Rks:
- forward vs backward propagation (depending on φ_{i})
- cycles inside the control flow \Rightarrow fix-point equations !
- a solution of this equation system:
\rightarrow assigns "globaly consistent" values to each φ_{i}
Rk: such a solution may not exist ...
- decidability may require abstractions and/or approximations

Example: elimination of redundant computations
An expression e is redundant at location i iff

- it is computed at location i
- this expression is computed on every path going from the initial location to location i
Rk: we consider here syntactic equality
- on each of these paths: operands of e are not modified between the last computation of e and location i

Optimization is performed as follows:

1. computation of available expressions (data-flow analysis)
2. $x:=e$ is redundant at loc i if e is available at i
3. $x:=e$ is replaced by $x:=t$
(where t is a temp. memory containing the value of e)

Elimination of redundant computation: an example

Data-flow equations for available expressions (1/2)

For a basic block b, we note:

- In (b) : available expressions when entering b
- Kill(b): expressions made non available by b (because an operand of e is modified by b)
- Gen(b): expressions made available by block b (computed in b, operands not modified afterwards)
- Out (b) : available expressions when exiting b

$$
\operatorname{Out}(b)=(\operatorname{In}(b) \backslash \operatorname{Kill}(b)) \cup \operatorname{Gen}(b)=F_{b}(\operatorname{In}(b))
$$

$F_{b}=$ transfer function of block b

Data-flow equations for available expressions (2/2)

How to compute $\operatorname{In}(b)$?

- if b is the initial block:

$$
\operatorname{In}(b)=\emptyset
$$

- if b is not the initial block:

An expression e is available at its entry point iff it is available at the exit point of each predecessor of b in the CFG

$$
\operatorname{In}(b)=\bigcap_{b^{\prime} \in \operatorname{Pre}(b)} \operatorname{Out}\left(b^{\prime}\right)
$$

\Rightarrow forward data-flow analysis along the CFG paths
Q: cycles inside the CFG \Rightarrow fix-points computations greatest vd least solutions ?

Solving the data-flow equations (1/2)

Let (E, \leq) a partial order.

- For $X \subseteq E, a \in E$:
- a is an upper bound of X if $\forall x \in X . x \leq a$
- a is a lower bound of X if $\forall x \in X . a \leq x$
- The least upper bound (lub, \sqcup) is the smallest upper bound
- The great lower bound $(g / b, \sqcap)$ is the largest lower bound
- (E, \leq) is a lattice if every subset of E admits a lub and a glb.
- A function $f: 2^{E} \rightarrow 2^{E}$ is monotonic if:

$$
\forall X, Y \subseteq E \quad X \leq Y \Rightarrow f(X) \leq f(Y)
$$

- $X=\left\{x_{0}, x_{1}, \ldots x_{n}, \ldots\right\} \subseteq E$ is an (increasing) chain if $x_{0} \leq x_{1} \leq \ldots x_{n} \leq \ldots$
- A function $f: 2^{E} \rightarrow 2^{E}$ is (\sqcup-)continuous if \forall increasing chain $X, f(\sqcup X)=\sqcup f(X)$

Solving the data-flow equations (2/2)

Fix-point equation: solution?

- properties are finite sets of expressions \mathcal{E}
- $\left(2^{\mathcal{E}}, \subseteq\right)$ is a complete lattice
\perp : least element, \top : greatest element
\sqcap : greatest lower bound, ப: least upper bound
- data-flow equations are defined on monotonic and continuous operators (\cup, \cap) on $\left(2^{\mathcal{E}}, \subseteq\right)$
- Kleene and Tarski theorems:
- the set of solution is a complete lattice
- the greatest (resp. least) solution can be obtained by successive iterations w.r.t. the greatest (resp. least) element of $2^{\mathcal{E}}$

$$
\operatorname{lfp}(f)=\sqcup\left\{f^{i}(\perp) \mid i \in \mathbf{N}\right\} \quad \operatorname{gfp}(f)=\sqcap\left\{f^{i}(\mathrm{~T}) \mid i \in \mathbf{N}\right\}
$$

Back to the example

Generalization

- Data-flow properties are expressed as finite sets associated to entry/exit points of basic blocs: In(b), out(b)
- For a forward analysis:
- property is "false" (\perp) at entry of initial block
- $\operatorname{Out}(b)=F_{b}(\operatorname{In}(b))$
- In(b) depends on Out(b'), where $b^{\prime} \in \operatorname{Pred}(b)$
(\square for " \forall paths", \sqcup for " \exists path")
- For a backward analysis:
- property is "false" (\perp) at exit of final block
- $\operatorname{In}(b)=F_{b}(\operatorname{Out}(b))$
- Out(b) depends on $\operatorname{In}\left(\mathbf{b}^{\prime}\right)$, where $b^{\prime} \in \operatorname{Succ}(b)$

Data-flow equations: forward analysis

Forward analysis, least fix-point	$\operatorname{In}(b)=\left\{\begin{array}{l}\perp \text { if } \mathrm{b} \text { is initial } \\ \bigsqcup_{b^{\prime} \in \operatorname{Pre}(b)} \operatorname{Out}\left(b^{\prime}\right) \text { otherwise. }\end{array}\right.$
Forward analysis, greatest fix-point	$\operatorname{In}(b)=\left\{\begin{array}{l}\perp \text { if } b \text { is initial } \\ \prod_{b}(\operatorname{In}(b)) \\ b^{\prime} \in \operatorname{Pre}(b)\end{array}\right.$
$\operatorname{Out}(b)=F_{b}(\operatorname{In}(b))$	

Data-flow equations: backward analysis

Backward analysis, least fix-point	$\begin{aligned} & \operatorname{Out}(b)=\left\{\begin{array}{l} \perp \bigsqcup_{b^{\prime} \in \operatorname{Succ}\left(b^{\prime}\right)}^{\perp} \operatorname{In}\left(b^{\prime}\right) \text { is final } \\ \operatorname{In}(b)=F_{b}(\operatorname{Out}(b)) \end{array}, .\right. \end{aligned}$
Backward analysis, greatest fix-point	$\begin{aligned} & \operatorname{Out}(b)=\left\{\begin{array}{l} \perp \prod_{b^{\prime} \in \operatorname{Succ}(b)} \operatorname{if} b \text { is final } \\ \operatorname{In}\left(b^{\prime}\right) \text { otherwise. } \end{array}\right. \\ & \operatorname{In}(b)=F_{b}(\operatorname{Out}(b)) \end{aligned}$

Active Variable

- A variable x is inactive at location i if it is not used in every CFG-path going from i to j, where j is:
- either a final instruction
- or an assignement to x.
- An instruction $\mathrm{x}:=\mathrm{e}$ at location i is useless if x is inactive at location i.
\Rightarrow useless instuctions can be removed ...

Rk: used means
"in a right-hand side assignment or in a branch condition".

Data-flow analysis for inactive variables

We compute the set of active variables ...

Local analysis

$\operatorname{Gen}(b)$ is the set of variables \times s.t. x is used in block b, and, in this block, any assignement to x happens after the (first) use of x.
$\operatorname{Kill}(i)$ is the set of variables x assigned in block b.

Global analysis : backward analysis, \exists a CFG-path (least solution)

$$
\begin{aligned}
\operatorname{Out}(b) & =\bigcup_{b^{\prime} \in \operatorname{Succ}(b)} \operatorname{In}\left(b^{\prime}\right) \\
\operatorname{In}(b) & =(\operatorname{Out}(b) \backslash \operatorname{Kill}(b)) \cup \operatorname{Gen}(b)
\end{aligned}
$$

- $\operatorname{Out}(b)=\emptyset$ if b is final.

Computation of functions Gen and Kill
Recursively defined on the syntax of a basic bloc B :

$$
\mathrm{B}::=\varepsilon|\mathrm{B} ; \mathrm{x}:=\mathrm{a}| \mathrm{B} ; \text { if } \mathrm{b} \text { goto } \mathrm{l} \mid \mathrm{B} ; \text { goto } \mathrm{l}
$$

Gen(B)	$=\operatorname{Gen}_{l}(\mathrm{~B}, \emptyset)$
Kill (B)	$=\operatorname{Kill}_{l}(\mathrm{~B}, \emptyset)$
$\operatorname{Gen}_{l}(\mathrm{~B} ; \mathrm{x}:=\mathrm{a}, X)$	$=\operatorname{Gen}_{l}(\mathrm{~B}, X \backslash\{\mathrm{x}\} \cup \operatorname{Used}(\mathrm{a})$)
$G e n_{l}(\mathrm{~B}$; if b goto l, X)	$=G e n_{l}(\mathrm{~B}, X \cup \operatorname{Used}(\mathrm{~b}))$
$G e n_{l}(\mathrm{~B} ;$ goto $\mathrm{l}, \mathrm{X})$	$=\operatorname{Gen}_{l}(\mathrm{~B}, X)$
$\operatorname{Gen}_{l}(\varepsilon, X)$	$=X$
$\operatorname{Kill}_{l}(\mathrm{~B} ; \mathrm{x}:=\mathrm{a}, X)$	$=\operatorname{Kill}_{l}(\mathrm{~B}, X \cup\{\mathrm{x}\})$
$\operatorname{Kill}_{l}(\mathrm{~B}$; if b goto l, X)	$=\operatorname{Kill}_{l}(\mathrm{~B}, X)$
$\operatorname{Kill}_{l}(\mathrm{~B} ;$ goto 1, X)	$=\operatorname{Kill}_{l}(\mathrm{~B}, X)$
$\operatorname{Kill}_{l}(\varepsilon, X)$	$=X$

Used(e): set of variables appearing in expression e

Removal of useless instructions

1. Compute the sets $\operatorname{In}(B)$ and $O u t(B)$ of active variables at entry and exit points of each blocks.
2. Let F : Code $\times 2^{\text {Var }} \rightarrow$ Code $F(b, X)$ is the code obtained when removing useless assignments inside b, assuming that variables of X are active at the end of b execution.

$$
\begin{array}{ll}
F(\mathrm{~B} ; \mathrm{x}:=\mathrm{a}, X) & = \begin{cases}F(B, X) & \text { if } x \notin X \\
F(B,(X \backslash\{x\}) \cup \mathrm{Used}(a)) ; x:=a & \text { if } x \in X\end{cases} \\
F(\mathrm{~B} ; \text { if b goto } \mathrm{l}, X) & =F(B, X \cup \operatorname{Used}(b)) ; \text { if b goto } 1 \\
F(\mathrm{~B} ; \text { goto } 1, X) & =F(B, X) ; \text { goto } 1 \\
F(\epsilon, X) & =\epsilon
\end{array}
$$

3. Replace each block B by $F(B$, Out $(B))$.

Rk: this transformation may produce new inactive variables ...

Constant propagation

Example:

- A variable is constant at location 1 if its value at this location can be computed at compilation time.
- At exit point of B1 and B2, i and j are constants
- At entry point of B3, i is not constant, j is constant.

Constant propagation: the lattice

- Each variable takes its value in $D=\mathbf{N} \cup\{\top, \perp\}$, where:
- T means "non constant value"
- \perp means "no information"
- Partial order relation \leq :

$$
\text { if } v \in D \text { then } \perp \leq v \text { and } v \leq \top \text {. }
$$

- The least upper bound U : for $x \in D$ and $v_{1}, v_{2} \in \mathbf{N}$

$$
\begin{array}{|l|l|l|l|}
\hline x \sqcup \top=\mathrm{\top} & x \sqcup \perp=x & v_{1} \sqcup v_{2}=\mathrm{T} \text { if } v_{1} \neq v_{2} & v_{1} \sqcup v_{1}=v_{1} \\
\hline
\end{array}
$$

Rk: relations \leq is extended to functions $\operatorname{Var} \rightarrow D$

$$
f 1 \leq f 2 \text { iff } \forall x . f 1(x) \leq f 2(x)
$$

Constant propagation: data-flow equations

- property at location 1 is a function $\operatorname{Var} \rightarrow D$.
- Forward analysis:

$$
\begin{aligned}
& \operatorname{In}(b)= \begin{cases}\lambda x . \perp & \text { if } b \text { is initial, } \\
\bigsqcup_{b^{\prime} \in \operatorname{Pred}(b)} \operatorname{Out}\left(b^{\prime}\right) & \text { otherwise }\end{cases} \\
& \operatorname{Out}(b)=F_{b}(\operatorname{In}(b))
\end{aligned}
$$

Transfer function F_{b} ?
a basic block $=$ sequence of assignements

$$
\mathrm{b}::=\epsilon \mid \mathrm{x}:=\mathrm{e} ; \mathrm{b}
$$

F_{b} defined by syntactic induction:

$$
\begin{array}{ll}
F_{\mathrm{x}:}:=\mathrm{e} ; \mathrm{b}(f) & =F_{\mathrm{b}}(f[x \mapsto f(e)]) \text { (assuming variable initialization) } \\
F_{\epsilon}(f) & =f
\end{array}
$$

Pgm transformation:
\forall block $b, f \in \operatorname{In}(b), f(\mathrm{e})=v \Rightarrow \mathrm{x}:=\mathrm{e}$ replaced by $\mathrm{x}:=\mathrm{v}$

Constant propagation can be viewed as abstraction of the standard semantics where expressions values are interpreted other domain D

1. Write this abstract semantics for the while language in an operational style (relation $\longrightarrow \#$)
2. Define a program transformation which removes useless computations (i.e., computations between constant operands)
3. Give the equations which express the correctness of this transformation

Another example of data-flow analysis

A computation of an expression e can be anticipated at loc. p iff:

- all paths from p contains a location p_{i} s.t. e is computed at p_{i}
- e operands are not modified between p and p_{i}

Example:

```
if (x>0)
        x = i + j;
    else
    repeat y = (i + j) * 2; x := x+1 ; until x>10
```

can be changed to

```
tmp = i + j;
if (x>0)
    x = tmp;
else
        repeat y = tmp * 2; x := x+ 1 ; until x>10
```

Application: moving invariants outside loops

Interprocedural analysis

```
main()
{
    int i,j ;
    void f() {
        int x,y ;
        y = i+j ; x = y ;
    }
    i = 0 ;
    f() ;
    j = 1;
```

- a dedicated basic block $B_{\text {call }}$ for the call instruction
- $\operatorname{In}\left(B_{c a l l}\right)=\operatorname{In}\left(B_{f_{i n}}\right), \operatorname{Out}\left(B_{c a l l}\right)=\operatorname{Out}\left(B_{f_{o u t}}\right)$

Rks:

- static binding is be assumed
- parameters ?

Exercice: Computation of active variables

Control-flow analysis

\rightarrow retrieve program control structures from the CFG?
Application: loop identification
\Rightarrow use of graph-theoretic notions:

- dominator, dominance relation
- strongly connected components

Rk1: most loops are easier to identify at syntactic level, but:

- use of goto instruction still allowed in high-level languages
- optimization performed on intermediate representations (e.g., CFG)

Rk2: other approaches can be used to identify loops ...

Node B_{1} is a dominator of $B_{2}\left(B_{2} \leq B_{1}\right)$ iff every path from the entry block to B_{2} goes through $B_{1} . \operatorname{Dom}(B)=\left\{B_{i} \mid B_{i} \leq B\right\}$.

An edge $\left(B_{1}, B_{2}\right)$ is a loop back edge iff $B_{2} \leq B_{1}$
To find "natural loops":

1. find a back edge $\left(B_{1}, B_{2}\right)$
2. find $\operatorname{Dom}\left(B_{2}\right)$
3. find blocks $B_{i} \in \operatorname{Dom}\left(B_{2}\right)$ s.t. there is a path from B_{i} to B_{2} not containing B_{1}.

Some machine level optimization techniques

Register Allocation

Pb:

- expression operands are much efficiently accessed when liying in registers (instead of RAM)
- the "real" number of registers is finite (and usually small)
\Rightarrow register allocation techniques:
- assigns a register to each operand (variable, temporary location)
- performs the memory exchange (LD, ST) when necessary
- optimality ?

Several existing techniques:

- optimal code generation for arithmetic expressions
- graph-coloring techniques (more general case)
- etc.

Code generation for arithmetic expressions: example

code generation for ($\mathrm{a}+\mathrm{b}$) - ($\mathrm{c}-(\mathrm{d}+\mathrm{e})$)
with 2 registers, and instruction format =OPRi, Ri, $X \quad($ where $X=R i$ or $X=M[x])$
Solution 1: one register needs to be saved

```
LD R0, M[a]
ADD R0, R0, M[b]
LD R1, M[d]
ADD R1, R1, M[e]
ST R1, M[t1] ! register R1 needs to be saved ...
LD R1, M[c]
SUB R1, R1, M[t1]
SUB R0, R0, R1
```

Solution 2: no register to save
LD R0, M[c]
LD R1, M[d]
ADD R1, R1, M[e]
SUB R0, R0, R1
LD R1, M[a]
ADD, R1, R1, M[b]
SUB, R1, R1, R0

Code generation for arithmetic expressions: principle

Evaluation of e1 op e2, assuming:

- r registers are available, evaluation of ei requires r_{i} registers
- intsruction format is "op reg, reg, ad" where "ad" is a register or a memory location

Several cases:

$r_{1}>r_{2}$:

- after evaluation of e1, $r_{1}-1$ registers available
- $r_{1}-1 \geq r_{2} \Rightarrow r_{1}-1$ registers are enough for e2
- $\Rightarrow r_{1}-r$ register allocations are required
$r_{1}=r_{2}$:
- after evaluation of e1, $r_{1}-1$ registers available
- $r_{1}-1<r_{2}, \Rightarrow r_{2}\left(=r_{1}\right)$ registers required for e2
- $\Rightarrow r_{1}+1-r$ register allocations are required
$r_{1}<r_{2}$:
- after evaluation of e1, $r_{1}-1$ registers available
- $r_{1}-1<r_{2}, \Rightarrow r_{2}$ (> r_{1}) registers required for e2
- $\Rightarrow r_{2}+1-r$ register allocations are required
- $\quad r_{2}-r$ allocations are enough if e2 is evaluated first !

A two-phase algorithm

Step 1: each AST node is labeled with the number of registers required for its evaluation
$\mathrm{rNb}: \operatorname{Aexp} \rightarrow \mathbf{N}(\mathrm{rNb}(\mathrm{e})$ is the number of registers required to evaluate e)

$$
\begin{aligned}
& \operatorname{rNb}(e)=\left\{\begin{array}{lll}
1 & \text { if } e & \text { is a left leaf } \\
0 & \text { if } e & \text { is a right leaf }
\end{array}\right. \\
& \mathrm{rNb}(\mathrm{e} 1 \mathrm{op} \mathrm{e} 2)=\left\{\begin{array}{l}
\max \left(\mathrm{rNb}\left(\mathrm{e}_{1}\right), \mathrm{rNb}\left(\mathrm{e}_{2}\right)\right) \quad \text { if } \mathrm{rNb}\left(\mathrm{e}_{1}\right) \neq \mathrm{rNb}\left(\mathrm{e}_{2}\right) \\
\mathrm{rNb}\left(\mathrm{e}_{1}\right)+1 \quad \text { if } \mathrm{rNb}\left(\mathrm{e}_{1}\right)=\mathrm{rNb}\left(\mathrm{e}_{2}\right)
\end{array}\right.
\end{aligned}
$$

Step 2: "optimal" code generation using these labels (exercice)
\rightarrow for a binary node e1 op e2:

- evaluate the more register demanding sub-expression first
- write the result in a register $R i$ (save one if necessary)
- evaluate the other sub-expression, write the result in a register $R j$
- generate OP, Ri, Ri, Rj

A more general technique

1. Intermediate code is generated assuming ∞ numbers of "symbolic" registers S_{i}
2. Assign a real register R_{i} to each symbolic register s.t.

- if R_{i} is assigned to S_{i}, R_{j} is assigned to S_{j}
- then Lifetime $\left(S_{i}\right) \cap$ lifetime $\left(S_{j}\right) \neq \emptyset \Rightarrow R_{i} \neq R_{j}$
where Lifetime $\left(S_{i}\right)$: sequences of pgm location where S_{i} is active
How to ensure this condition?

Collision graph G_{C} :

- Nodes denote lifetime symbolic registers: $N_{i}=\left(S_{i}\right.$, Lifetime $\left.\left(S_{i}\right)\right)$
- Edges are the set $\left\{\left(\left(S_{1}, L_{1}\right),\left(S_{2}, L_{2}\right) \mid L_{1}\right.\right.$ and L_{2} overlap $\}$
\Rightarrow register allocation with k real register $=k$-coloring problem of G_{C}
(i.e., assign a distinct colour to each pair of adjacent nodes)

Example 1

```
S1 := e1
S2 := e2
```

$\ldots \quad$ S2 \ldots
S3 $:=S 1+S 2$

S4 : $=$ S $1 * 5$

```
S1 used
```

S4 used
S3 used

Collision Graph:

Can be colored with 2 colors $\Rightarrow 2$ real registers are enough

k-coloring in practice ? (1)

```
When k>2, this problem is NP-complete ...
An efficient heuristic:
Repeat:
    if exists a node N of G}\mp@subsup{G}{C}{}\mathrm{ such that degree(N)<k
    ( }N\mathrm{ can receive a distinct colour from all its neighbours)
    remove N (and corresponding edges) from G}\mp@subsup{G}{C}{}\mathrm{ and push it on a stack S
    else (G}\mp@subsup{G}{C}{}\mathrm{ is assumed to be non }k\mathrm{ -colourable)
    choose a node N (1)
    remove N from G}\mp@subsup{G}{C}{(2)
until \(G_{C}\) is empty
While \(S\) is not empty
pop a node from \(S\)
add it to \(G\), give it a colour not used by one of its neighbours
```

Rk: this algo may sometimes miss k-colorable graphs ...

What happens when there is no node of degree $<k$?
(1) choose a node N to remove:
\rightarrow high degree in G_{C}, not corresponding to an inner loop, etc.
(2) remove node N :
\rightarrow save a register into memory before (register spilling)
Several attempts to improve this algorithm:
node coalescing:
S1 $:=\mathrm{S} 2$, Lifetime $(S 1) \cap \operatorname{Lifetime}(S 2)=\emptyset$
\Rightarrow nodes associated to S1 and S2 could be merged pb: it increases the graph degree ...
lifetime splitting:
long lifetime increases the graph degree
\Rightarrow split it into several parts ...
pb : where to split?

Instruction scheduling

Motivation: exploit the instruction parallelism provided in many target architectures (e.g., VLIW processors, instruction pipeline, etc.)

Pbs:

- possible data dependancies between consecutive instructions (e.g., x := 3 ; y := x+1)
- possible resource conflicts between consecutive instructions (ALU, co-processors, bus, etc.)
- consecutive instructions may require various execution cycles
- etc.
\Rightarrow Main technique: change the initial instruction sequence (instruction scheduling)
- preserve the initial pgm semantics
- better exploit the hardware resources

Rks: "loop unrolling" and "expression tree reduction" may help ...

Dependency Graph

Data dependencies:

\rightarrow execution order of 2 instructions should be preserved in the following situation:
Read After Write (RAW) : inst. 2 read a data written by inst. 1
Write After Read (WAR) : inst. 2 write a data read by inst. 1
Write After Write (WAW) : inst. 2 write a data written by inst. 1

Dependency graph G_{D}

- nodes $=\{$ instructions $\}$
- edges $=\left\{\left(i_{1}, d, i_{2}\right) \mid\right.$ there is a dependency d from i_{1} to $\left.i_{2}\right\}$

Rk: if we consider a basic block, G_{D} is a directed acyclic graph.

Any topological sort of G_{D} leads to a valid result (w.r.t. pgm semantics). This sort can be influenced by several factors:

- the resources used by the instruction (\exists a static reservation table)
- the number of cycles it requires (latency)
- etc.

Example

1. Draw the dependency graph G_{D} associated to the following program
2. Give a topological sort of G_{D}
3. Rewrite this program with a "maximal" parallelism
4. a := x+1
5. $x:=2+y$
6. $y:=z+1$
7. $t:=a * b$
8. v :=a*c
9. $v:=3+t$

Software pipelining (overview ...)

Idea: exploit the parallelism between instrutions of distinct loop iterations

```
for k in 1 .. N loop
    r := T[k] ; - inst. A
    x := x + r ; - inst. B
    T[k] := x ; - inst. C
end loop
```

Assumptions: 3 cycles per instruction, 1 cycle delay when no dependencies

- Initial exec. sequence: $A(1), B(1), C(1), A(2), B(2), C(2), \ldots A(k), B(k), C(k)$
$\Rightarrow 7$ cycles / iteration
- "Pipelined exec. sequence": $A(1), A(2), A(3), B(1), B(2), B(3), C(1), C(2), C(3), \ldots$
$\Rightarrow 3$ cycles / iteration!
(real life) pbs:
- N not always divisible by the number of instruction in the loop body

```
for k in 1 to N-2 step 3 loop A(k) ; A(k+1) ; A(k+2) ...
```

- high latency instruction in the loop body
- possible overhead when k is not "large enough"

Code Generation

Overview

1. Introduction
2. The "M" Machine
3. Code generation for basic while
4. Extension 1: blocks and procedures
5. Extension 2: some OO features

Main issues for code generation

- input : (well-typed) source pgm AST
- output : machine level code

Expected properties for the output:

- compliance with the target machine instruction set, architecture, memory access, OS, ...
- correctness of the generated code semantically equivalent to the source pgm
- optimality w.r.t. non-functional criteria execution time, memory size, energy comsumption, ...

A pragmatic approach

Intermediate Representation 1

> optimization(s)
optimization(s)
Intermediate Representation n

target machine code

- Abstractions of a real target machine
- generic code level instruction set
- simple addressing modes
- simple memory hierarchy
- Examples
- a "stack machine"
- a "register machine"
- etc.

Rk: other intermediate representations are used in the optimization phases ...

The " M " Machine

- Machine with (unlimited) registers Ri special registers: program counter PC, frame pointer FP, stack pointer SP, register R0 (contains always 0)
- Instructions, addresses, and integers take 4 bytes in memory
- Address of variable x is E - offx where:
- $\mathrm{E}=$ address of the environment definition of x
- offx $=$ offset of x within this environment (staticaly computed, stored in the symbol table)
- Addressing modes: Ri, val (immediate), Ri +/- Rj, Ri +/- offset
- usual arithmetic instructions OPER: ADD, SUB, AND, etc.
- usual (conditional) branch instructions BRANCH: BA, BEQ, BGT, etc.

Instruction Set

instruction	informal semantics
OPER Ri, Rj, Rk	$\mathrm{Ri} \leftarrow \mathrm{Rj}$ oper Rk
OPER Ri, Rk, val	$\mathrm{Ri} \leftarrow \mathrm{Rj}$ oper val
CMP Ri, Rj	$\mathrm{Ri}-\mathrm{Rj}$ (set cond flags)
LD Ri, [adr]	$\mathrm{Ri} \leftarrow$ Mem[adr]
ST Ri, [adr]	$\mathrm{Mem}[\mathrm{adr} \leftarrow \mathrm{Ri}$
BRANCH label	if cond then PC \leftarrow label else PC $\leftarrow \mathrm{PC}+4$
CALL label	branch to the procedure labelled with label end of procedure
RET	

The while language

$$
\begin{aligned}
& \text { p ::= d;c } \\
& \text { d }::=\operatorname{var} x \mid d ; d \\
& s \quad::=x:=a|s ; s| \text { if } b \text { then } s \text { else } s \mid \text { while } b s \\
& a \quad::=n|x| a+a|a * a| \ldots \\
& b \quad::=a=a \mid b \text { and } b|\operatorname{not} b| \ldots
\end{aligned}
$$

Rk: terms are well-typed
\rightarrow distinction between boolean and arithmetic expr.

Exo: Give the "M Machine" code for the following terms:

1. $y:=x+42 *(3+y)$
2. if (not $x=1$) then $x:=x+1$

$$
\text { else } x \text { := x-1 ; y := x ; }
$$

Functions for Code Generation

GCStm : Stm \rightarrow Code*

GCStm (s) computes the code c corresponding to statement s.

GCAExp : Exp \rightarrow Code* \times Reg GCAExp (e) returns a pair (C, i) where C is the code allowing to 1. compute the value of e, 2. store it in Ri.

GCBExp : $\mathrm{BExp} \times \mathcal{L}$ abel $\times \mathcal{L}$ abel \rightarrow Code*
GCBExp (b, ltrue, lfalse) produces code C allowing to compute the value of b and branch to label ltrue when this value is "true" and to lfalse otherwise.

Auxilliary functions

$$
\begin{aligned}
\text { AllocRegister }: & \rightarrow \text { Reg } \\
& \text { allocate a new register } \mathrm{Ri}
\end{aligned}
$$

```
newLabel : }->\mathrm{ Labels
    produce a new label
GetOffset : Var }->\mathbf{N
    returns the offset
    corresponding to the specified name
```

|| denotes concatenation for Code sequences.

GCStm

$\operatorname{GCStm}(\mathrm{x}:=\mathrm{e})$		$\begin{aligned} & (\mathrm{C}, \mathrm{i})=\mathrm{GCAExp}(\mathrm{e}), \\ & \mathrm{k}=\mathrm{GetOffset}(\mathrm{x}) \end{aligned}$	
	in	$\mathrm{C} \\|$ ST Ri, [FP-k]	
$\operatorname{GCStm}\left(\mathrm{c}_{1} ; \mathrm{c}_{2}\right)$	Let	$\mathrm{C}_{1}=\operatorname{GCStm}\left(\mathrm{C}_{1}\right)$	
		$\mathrm{C}_{2}=\operatorname{GCStm}\left(\mathrm{C}_{2}\right)$	
	in	$\mathrm{C}_{1} \\| \mathrm{C}_{2}$	

GCStm (2)

$$
\begin{aligned}
& \text { GCStm (while e c) }=\text { Let } \mathrm{lb}=\text { newLabel(), } \\
& \text { Itrue=newLabel(), } \\
& \text { Ifalse=newLabel () } \\
& \text { in lb:|| } \\
& \text { GCBExp(e,ltrue,Ifalse)\| } \\
& \text { ltrue:|| } \\
& \text { GCStm(c) || } \\
& \text { BA lb|| } \\
& \text { Ifalse: }
\end{aligned}
$$

GCStm (3)

GCStm (if e then c_{1} else c_{2}) $=$ Let Inext=newLabel(), Itrue=newLabel (), Ifalse=newLabel ()
in GCBExp(e,Itrue,Ifalse)\|
Itrue:
GCStm $\left(\mathrm{C}_{1}\right) \|$
BA Inext ||
Ifalse:||
GCStm $\left(\mathrm{C}_{2}\right) \|$
Inext:

GCAexp

GCBexp

$\operatorname{GCBExp}\left(\mathrm{e}_{1}=e_{2}\right.$, ,true,Ifalse $)$	$\begin{aligned} = & \text { Let } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \left(\mathrm{C}_{1}, \mathrm{i}_{1}\right)=\operatorname{GCAExp}\left(\mathrm{e}_{1}\right), \\ & \left(\mathrm{C}_{2}, \mathrm{i}_{2}\right)=\operatorname{GCAExp}\left(\mathrm{e}_{2}\right), \\ & \mathrm{C}_{1}\left\\|\mathrm{C}_{2}\right\\| \\ & \mathrm{CMP} \mathrm{Ri}_{1}, \mathrm{Ri}_{2} \\ & \mathrm{BEQ} \text { Itrue } \\ & \mathrm{BA} \text { Ifalse } \end{aligned}$
$\operatorname{GCBExp}\left(\mathrm{e}_{1}\right.$ et e_{2}, Itrue, Ifalse	$\begin{aligned} = & \text { Let } \\ & \text { in } \end{aligned}$	```l=newLabel() GCBExp(e) I:\| GCBExp(\mp@subsup{e}{2}{}}\mathrm{ ,Itrue,Ifalse)```
GCBExp(NOT e,Itrue,lfalse)	$=$	GCBExp(e,Ifalse,Itrue)

Exercises

- code obtained for
- $y ~:=x+42$ * (3+y)
- if (not $x=1$) then $x:=x+1$
else x := $x-1$; $y ~:=x$;
- add new statements (e.g, repeat)
- add new operators (e.g, b ? e1 : e2)

Extension 1: blocks

Blocks

Syntax

$$
\begin{aligned}
S & ::=\cdots \mid \text { begin } D_{V} ; S \text { end } \\
D_{V} & ::=\operatorname{var} x \mid D_{V} ; D_{V}
\end{aligned}
$$

Rk: variables are unitialized and assumed to be of type Int
Problems raised for code generation \rightarrow to preserve scoping rules:

- local variables should be visible inside the block
- their lifetime should be limited to block execution

Possible locations to store local variables
\rightarrow registers vs memory

Storing local variables in memory - Example 1

```
begin
    var x ; var y ; var z ;
end
```


- a memory environment is associated to each declaration $D v$
- register FP contains the address of the current environment
- (static) offsets are associated to each local variables

Storing local variables in memory - Example 2

```
begin
    var x ; var y ; <sl>
    begin
        var x ; var z ; <s2>
    end ;
    <s3>
end
```


- entering/leaving a block \rightarrow allocate/de-allocate a mem. env.
- nested block env. have to be linked together: "Ariane link"
\Rightarrow a stack of memory environments \ldots. (\sim operational semantics)

Structure of the memory

1: global variables
2: execution stack, SP = last occupied address
3: heap (for dynamic allocation)

Code generation for variable declarations

```
SizeDecl: D
SizeDecl (d) computes the size of declarations d
```

| SizeDecl $(\operatorname{var} \mathrm{x})=$ | $4 \quad(\mathrm{x}$ of type Int) | |
| :--- | :--- | :--- | :--- |
| SizeDecl $\left(\mathrm{d}_{1} ; \mathrm{d}_{2}\right)=$ | Let | $\mathrm{v}_{1}=\operatorname{SizeDecl}\left(\mathrm{d}_{1}\right)$, |
| | | $\mathrm{v}_{2}=\operatorname{SizeDecl}\left(\mathrm{d}_{2}\right)$ |
| | in | $\mathrm{v}_{1}+\mathrm{v}_{2}$ |
| | | |

Code Generation for blocks

GCStm (begin d ; s ; end) = Let size=SizeDecl(d), C=GCStm(s)
in $\quad A D D, S P, S P,-4 \|$
St FP, [SP] \|
ADD FP, SP, 0 ||
ADd SP, SP, size ||
C ||
ADD SP, FP, 0 ||
LD FP, [SP] ||
AdD SP, SP, 4 ||

With the help of some auxilliary functions ...

prologue(size)	epilogue	push register(Ri)
ADD SP, SP, -4	ADD SP, FP, 0	
ST FP, [SP]	LD FP, [SP]	ADD SP, SP, -4
ADD FP, SP, 0	ADD SP, SP, +4	
ADD SP, SP, size		

$$
\begin{aligned}
& \text { GCStm (begin d ; s ; end) }=\text { Let size=SizeDecl(d), } \\
& \text { C=GCStm(s) } \\
& \text { in Prologue(size) || } \\
& \text { C \| } \\
& \text { Epilogue }
\end{aligned}
$$

Access to variables from a block ?
begin
var
$\mathrm{x}:=\ldots$
end

What is the memory address of x ?

- if x is a local variable (w.r.t the current block) $\Rightarrow \operatorname{adr}(\mathrm{x})=$ FP + GetOffset(x)
- if x is a non local variable
\Rightarrow it is defined in a "nesting" memory env. E
$\Rightarrow \operatorname{adr}(\mathrm{x})=\operatorname{adr}(E)+$ GetOffset(x) $\operatorname{adr}(E)$ can be accessed through the "Ariane link" ...

Access to non local variables

The number n of indirections to perform on the "Ariane link" depends on the "distance" between:

- the nesting level of the current block : p
- the nesting level of the target environment : r

More precisely:

- $r \leq p$
- $n=p-r$
$\Rightarrow n$ can be staticaly computed..

Example

```
begin
    var x ; /* env. E1, nesting level = 1 */
    begin
        var y ; /* env. E2, nesting level = 2 */
        begin
            var z ; /* env. E3, nesting level = 3 */
            x := y + z /* s, nesting level = 3 */
        end
    end
end
```


From statement s:

- no indirection to access to z
- 1 indirection to access to y
- 2 indirections to access to x

Code generation for variable access

1. the nesting level r of each identifier \mathbf{x} is computed during type-checking;
2. it is associated to each occurrence of x in the AST (via the symbol table)
3. function GCStm keeps track of the current nesting level p (incremented/decremented at each block entry/exit)
$\operatorname{adr}(\mathrm{x})$ is obtained by executing the following code:

- if $r=p$:
FP + GetOffset(x)
- if $r<p$:

$$
\begin{aligned}
& \text { LD Ri, }[\mathrm{FP}] \\
& \mathrm{LD} \text { Ri, }[\mathrm{Ri}]\} \quad(p-r-1) \text { times } \\
& \mathrm{Ri}+\operatorname{GetOffset}(\mathrm{x})
\end{aligned}
$$

Example (ctn'd)

begin

```
    var x ; /* env. E1, nesting level = 1 */
```

begin
var y; /* env. E2, nesting level $=2$ */
begin
var z; /* env. E3, nesting level $=3$ */
$\mathrm{x}:=\mathrm{y}+\mathrm{z} / * \mathrm{~s}$, nesting level $=3$ */
end
end
end

$$
\begin{aligned}
& \text { LD R1, [FP] ! R1 = adr(E2) } \\
& \text { LD R2, }[\mathrm{R} 1+\text { offy }] \quad!\mathrm{R} 2=y \\
& \text { LD R3, }[\mathrm{FP}+\mathrm{offz}] \quad!\mathrm{R} 3=\mathrm{z} \\
& \text { ADD R4, R2, R3 } \quad!\mathrm{R} 4=\mathrm{y}+\mathrm{z} \\
& \text { LD R5, [FP] } \\
& \text { LD R5, [R5] !R5 = adr(E1) } \\
& \text { ST R4, }[\mathrm{R} 5+\text { offx }] \quad!\mathrm{x}=\mathrm{y}+\mathrm{z}
\end{aligned}
$$

Code generated for statement s

Extension 2: Procedures

Procedure declarations:

$$
\begin{aligned}
D_{P} & ::=\operatorname{proc} p\left(F P_{L}\right) \text { is } S ; D_{P} \mid \epsilon \\
F P_{L} & ::=\mathbf{x}, F P_{L} \mid \epsilon
\end{aligned}
$$

Statements:

$$
\begin{aligned}
S & ::=\cdots \mid \text { begin } D_{V} ; D_{P} ; S \text { end } \mid \text { call } p\left(E P_{L}\right) \\
E P_{L} & ::=A E x p, E P_{L} \mid \epsilon
\end{aligned}
$$

$F P_{L}$: formal parameters list ; $E P_{L}$: effective parameters list

Rk: we assume here value-passing of integer parameters ...

Example

```
var z ;
```

proc p1 () is
begin
proc p2 (x, y) is $z:=x+y$;
$\mathrm{z}:=0$;
call p2 (z+1, 3) ;
end
proc p3 (x) is

```
        begin
        var z ;
        call p1() ; z := z+x ;
    end
```

call p3(42) ;

Main issues for code generation

Procedure P is calling procedure $2 \ldots$

Before the call:

- set up the memory environment of Q
- evaluate and "transmit" the effective parameters
- switch to the memory environment of Q
- branch to first intruction of Q

During the call:

- access to local/non local procedures and variables
- access to parameter values

After the call:

- switch back to the memory environment of P
- resume execution to the P instruction following the call

Access to non-local variables

```
proc main is
begin /* definition env. of p */
    var x ;
    proc p() is x:=3 ;
    proc q() is
        begin
            var x ;
            proc r() is call p() ;
            call r() ;
        end ;
    call q() ;
end
```

Static binding \Rightarrow when p is executed:

- acces to the memory env. of main $=$ definition environment of the callee, static link
- acces to the memory env. of r memory environment of the caller, dynamic link

Information exchanged between callers and callees?

- parameter values
- return address
- address of the caller memory environment (dynamic link)
- address of the callee environment definition (static link)

This information should be stored in a memory zone:

- dynamically allocated
(exact number of procedure calls cannot be foreseen at compile time)
- accessible from both parties
(those address could be computed by the caller and the callee)
inside the execution stack, at well defined offsets w.r.t FP

A possible "protocol" between the two parties

Before the call, the caller:

- evaluates the effective parameters
- pushes their values
- pushes the static link of the callee
- pushes the return address, and branch to the callee's 1st instruction when it begins, the callee:
- pushes FP (dynamic link)
- assigns SP to FP (memory env. address)
- allocates its local variables on the stack
when it ends, the callee:
- de-allocates its local variables
- restores FP to caller's memory env. (dynamic link)
- branch to the return address, and pops it from the stack

After the call, the caller

- de-allocates the static link and parameters

Organization of the execution stack

Memory environment of the callee

...	$\begin{aligned} & 0 \\ & \leftarrow \text { SP, FP- } 4^{*} n \end{aligned}$
Loc. var $_{n}$	
...	
Loc. var $_{1}$	$\leftarrow \mathrm{FP}$
Dynamic link	$\leftarrow \mathrm{FP}$
Return address	$\leftarrow \mathrm{FP}+4$
Static link	$\leftarrow \mathrm{FP}+8$
Param $_{n}$	$\leftarrow \mathrm{FP}+12$
\ldots	
Param ${ }_{1}$	$\leftarrow \mathrm{FP}+8+4^{*} \mathrm{n}$

Code generation for a procedure declaration

GCProc: $D_{P} \rightarrow$ Code*
GCStm (dp) computes the code c corresponding to procedure declaration dp.

GCProc (proc $\mathrm{p}\left(F P_{L}\right)$ is send $)=$	Let		
		$\mathrm{C}=\operatorname{GCStm}(\mathrm{s})$	
	in	$\operatorname{Prologue(0)\\| }$	
		$\mathrm{C} \\|$	
		Epilogue	

GCProc (proc $\mathrm{p}\left(F P_{L}\right)$ is begin $\mathrm{dv} ; \mathrm{dp} ; \mathrm{s}$ end $)=$ Let	size $=$ SizeDecl(dv),	
	$\mathrm{C}=$ GCStm(s)	
in \quad Prologue(size) $\\|$		
	$\mathrm{C} \\|$	
	Epilogue	

Rk: this function is applied to each procedure declaration

Prologue \& Epilogue

Prologue (size):

push (FP)	! dynamic link
ADD FP, SP, 0	! FP $:=$ SP
ADD SP, SP, -size	! loc. variables allocation

Epilogue:

```
ADD SP, FP, 0
LD FP, [SP]
ADD SP, SP, +4
RET
! SP := FP, loc. var. de-allocation
! restore FP
! return to caller
```

RET:
LD PC, [SP] // ADD SP, SP, +4

Code Generation for a procedure call

Four steps:

1. evaluate and push each effective parameter
2. push the static link of the callee
3. push the return address and branch to the callee
4. de-allocate the parameter zone
```
GCStm (call p (ep)) = Let (C, size) = GCParam(ep)
in
C |
Push (StaticLink(p)) |
CALL p|
ADD SP, SP, size+4
```

CALL p:
ADD R1, PC, +4 // Push (R1) // BA p

Parameters evaluation

GCParam: $E P_{L} \rightarrow$ Code* $^{*} \times \mathbf{N}$
$\operatorname{GCStm}(\mathrm{ep})=(\mathrm{c}, \mathrm{n})$ where c is the code to evaluate and "push" each effective parameter of ep and n is the size of pushed data.

Static link and non local variable access ?

- A global (unique) name is given to each identifier:

```
proc Main is
    proc P1 (...) is
                proc Pn (...) is
                begin
                    var x ...
        end
```


- This notation induces a partial order:

$$
\left(\text { Main. } P_{1} \cdots . P_{n} \leq \text { Main. } P_{1}^{\prime} \cdots . P_{n^{\prime}}^{\prime}\right) \Leftrightarrow\left(n \leq n^{\prime} \text { and } \forall k \leq n . P_{k}=P_{k}^{\prime}\right)
$$

- For an identifier $x=$ Main. $P_{1} \cdots . P_{n} . x$, $x^{\bullet}=$ Main. $P_{1} \cdots . P_{n}$ is the definition environment of x
- For any identifier x (variable or procedure), procedure P can access x iff $x^{\bullet} \leq P$.

Examples

- A variable x declared in P can be accessed from P since $x^{\bullet}=P$ (hence $x^{\bullet} \leq P$).
- If g and x are declared in f, then x can be accessed from g since $x^{\bullet}=f$ and $f \leq g$.
- If x and f_{1} are declared in $\operatorname{Main}, f_{2}$ is declared in f_{1}, then x can be accessed from f_{2} since $x^{\bullet}=$ Main, $f_{2}=$ Main. $f_{1} . f_{2}$ $\left(x^{\bullet} \leq f_{2}\right)$
- If p_{1} and p_{2} are both declared in Main, x is declared in p_{1}, then x cannot be accessed from p_{2}, since $x^{\bullet}=$ Main. p_{1} and Main. $p_{1} \not \leq$ Main. p_{2}

Code Generation for accessing (non-) local identifiers

d_{x} : offset of x (variables or parameters) in its definition environment (x^{\bullet})
P : current procedure

Condition	$x=$ variable or parameter	$x=$ procedure
$x^{\bullet}=P$	$\operatorname{adr}(\mathrm{x})=\mathrm{FP}+\mathrm{d}_{x}$	$\mathrm{SL}(\mathrm{x})=\mathrm{FP}$
$x^{\bullet}<P$	$\mathrm{n}-\mathrm{k}-1$ indirections	$\mathrm{n}-\mathrm{k}-1$ indirections
$x=M \cdot P_{1} \cdots P_{k}$	$\mathrm{LD} \mathrm{R},[\mathrm{FP}+8]$	$\mathrm{LD} \mathrm{R},[\mathrm{FP}+8]$
$P=M \cdot P_{1} \cdots P_{k} \cdots P_{n}$	$\mathrm{LD} \mathrm{R},[\mathrm{R}+8]\} \times(n-k-1)$	$\mathrm{LD} \mathrm{R},[\mathrm{R}+8]\} \times(n-k-1)$
	$\operatorname{adr}(\mathrm{x})=\mathrm{R}+\mathrm{d}_{x}$	$\mathrm{SL}(\mathrm{x})=\mathrm{R}$

Back to the 1st example

```
var z ;
proc p1 () is
    begin
        proc p2(x, y) is z := x + y ;
        z := 0 ;
        call p2(z+1, 3) ;
    end
proc p3 (x) is
    begin
        var z ;
        call p1() ; z := z+x ;
    end
call p3(42) ;
```


Exercice:

- give the execution stack when p2 is executed
- give the code for procedures p1 and p2

Exercice

Consider the following extensions

- functions
- other parameter modes (by reference, by result)
- dynamic binding for variables and procedures ?

Procedures used as variables or parameters

```
var z1 ;
var p proc (int) ; /* p is a procedure variable */
proc p1 (x : int) is z1 := x ;
proc p2 (q : proc (int)) is call q(2) ;
proc q1 is
    begin
        var z1 ;
        proc q2 (y int) is z1 := x ;
        p := q2 ;
        call p ;
    end
p := p1 ;
call p ;
call p2 (p1) ;
Q: what code to produce for p := ...? for call p2(p1)? for call p ?
```

Information associated to a procedure at code level

$$
\mathrm{p}:=\mathrm{q} 2
$$

call p

To translate a procedure call, we need:

- the address of its 1st instruction
- the address of its environment definition
\Rightarrow Variable p should store both information
\Rightarrow At code level, a procedure type is a pair (address of code, address of memory environment)

Exercice: code produced for the previous example ?

