Programming Languages and Compiler Design

Programming Language Semantics Compiler Design Techniques

Yassine Lakhnech & Laurent Mounier

{lakhnech,mounier}@imag.fr
http://www-verimag.imag.fr/lakhnech

http://www-verimag.imag.fr/mounier.

Master of Sciences in Informatics at Grenoble (MoSIG)

Grenoble Universités

(Université Joseph Fourier, Grenoble INP)

Code Optimization

Objective (of this chapter)

- give some indications on general optimization techniques:
 - data-flow analysis
 - register allocation
 - software pipelining
 - etc.
- describe the main data structures used:
 - control flow graph
 - intermediate code (e.g., 3-address code)
 - Static Single Assignment form (SSA)
 - etc.
- see some concrete examples

But not a complete panorama of the whole optimization process

(e.g.: a real compiler, for a modern processor)

Objective of the optimization phase

Improve the *efficiency* of the target code, while preserving the source semantics.

efficiency → several (antagonist) criteria

- execution time
- size
- memory used
- energy consumption
- etc.
- ⇒ no optimal solution, no general algorithm
- ⇒ a bunch of optimization techniques:
 - inter-dependant each others
 - sometimes heuristic based

Two kinds of optimizations

Independant from the target machine

"source level" or "assembly level" pgm transformations:

- dead code elimination
- constant propagation, constant folding
- code motion
- common subexpressions elimination
- etc.

Dependant from the target machine

optimize the use of the hardware resources:

- machine instruction
- memory hierarchy (registers, cache, pipeline, etc.)
- etc.

Overview

- 1. Introduction
- 2. Some optimizations independant from the target machine
- 3. Some optimizations dependant from the target machine

Main principle

Input: initial intermediate code

Output: optimized intermediate code

Several steps:

- 1. generation of a control flow graph (CFG)
- 2. analysis of the CFG
- 3. transformation of the CFG
- 4. generation of the output code

Intraprocedural 3-address code (TAC)

"high-level" assembly code:

- binary logic and arithmetic operators
- use of temporary memory location ti
- assignments to variables, temporary locations
- a label is assigned to each instruction
- conditional jumps goto

Examples:

- 1: x := y op x
- 1: x := op y
- 1: x := y
- 1: goto 1'
- 1: if x oprel y goto 1'

Basic block (BB)

A maximal instruction sequence $S = i_1 \cdot \cdot \cdot \cdot i_n$ such that:

- S execution is never "broken" by a jump \Rightarrow no goto instruction in $i_1 \cdot \cdot \cdot \cdot i_{n-1}$
- S execution cannot start somewhere in the middle \Rightarrow no label in $i_2 \cdot \cdot \cdot \cdot i_n$
- ⇒ execution of a basic bloc is atomic

Partition of a 3-address code BBs:

- computation of Basic Block heads:
 1st inst., inst. target of a jump, inst. following a jump
- computation of Basic Block tails:last inst, inst. before a Basic Block head
- ⇒ a single traversal of the TAC

Control Flow Graph (CFG)

A representation of how the execution may progress inside the TAC

 \rightarrow a graph (V, E) such that:

$$V = \{B_i \mid B_i \text{ is a basic block}\}$$

$$E = \{(B_i, B_j) \mid$$
 "last inst. of B_i is a jump to 1st inst of B_j " \vee "1st inst of B_j follows last inst of B_i in the TAC"}

Example

Give the Basic Blocks and CFG associated to the following TAC sequence:

$$0. x := 1$$

1.
$$y := 2$$

3.
$$x := x+1$$

$$4. z := 4$$

6.
$$z := 5$$

8.
$$z := z+2$$

9.
$$r := 1$$

10 y :=
$$y-1$$

Optimizations performed on the CFG

Two levels:

Local optimizations:

- computed inside each BB
- BBs are transformed independent each others

Global optimizations:

- computed on the CFG
- transformation of the CFG:
 - code motion between BBs
 - transformation of BBs
 - modification of the CFG edges

Local optimizations

- algebraic simplification, strength reduction
 - → replace costly computations by less expensive ones
- copy propagation
 - → suppress useless variables
 (i.e., equal to another one, or equal to a constant)
- constant folding
 - → perform operations between constants
- common subexpressions
 - → suppress duplicate computations (already computed before)
- dead code elimination → suppress useless instructions (which do not influence pgm execution)

Initial code:

```
a := x ** 2
b := 3
c := x
d := c * c
e := b * 2
f := a + d
g := e * f
```

Algebraic simplification:

```
a := x ** 2

b := 3

c := x

d := c * c

e := b * 2

f := a + d

g := e * f
```

Copies propagation:

```
a := x * x b := 3 b := 3 c := x d := x * x d := x * x d := x * x e := b << 1 e := 3 << 1 f := a + d f := a + d g := e * f
```

Constant folding:

```
a := x * x b := 3 b := 3 c := x d := x * x d := x * x d := x * x e := 3 << 1 e := 6 f := a + d f := a + d g := e * f
```

Elimination of common subexpressions:

a	: =	X	*	X	a	: =	X	*	X
b	:=	3			b	:=	3		
С	:=	X			С	:=	X		
d	:=	X	*	x	d	:=	a		
е	:=	6			е	:=	6		
f	:=	а	+	d	f	:=	а	+	d
g	:=	е	*	f	g	:=	е	*	f

Copies propagation:

```
a := x * x b := 3 b := 3 c := x d := x d := a d := a e := 6 f := a + d g := 6 * f
```

Dead code elimination (+ strength reduction):

Local optimization: a more concrete example

Inital source program: addition of matrices

```
for (i=0; i < 10; i ++)

for (j=0; j < 10; j++)

S[i,j] := A[i,j] + B[i,j]
```

Basic blocks:

```
B1: i := 0
```

B2: if i > 10 goto B7

B3: j := 0

B4: if j > 10 goto B6

B5

B6: i := i + 1

goto B2

B7: end

Control Flow Graph

Inital Block B5

B5:	t1 := 4 * i	t8 := B[t7]			
		t9 := t4 + t8			
	t2 := 40 * j t3 := t1 + t2	t10:= 4 * i			
	t3 := t1 + t2 t4 := A[t3]	t11:= 40 * j			
	t = A[t = 0] $t = 4 * i$	t12:= t10 + t11			
	t6 := 40 * j	S[t12] := t9			
	t7 := t5 + t6	j := j + 1			
		goto B4			

Optimization of B5 (1/4)

B5:
$$t1 := 4 * i$$

 $t2 := 40 * j$
 $t3 := t1 + t2$
 $t4 := A[t3]$
 $t5 := 4 * i$
 $t6 := 40 * j$
 $t7 := t5 + t6$
 $t8 := B[t7]$
 $t9 := t4 + t8$
 $t10 := 4 * i$
 $t11 := 40 * j$
 $t12 := t10 + t11$
 $S[t12] := t9$
 $j := j + 1$
 $goto B4$

A same value is assigned to temporary locations t1, t5, t10

Optimization of B5 (2/4)

B5:
$$t1 := 4 * i$$

 $t2 := 40 * j$
 $t3 := t1 + t2$
 $t4 := A[t3]$
 $t6 := 40 * j$
 $t7 := t1 + t6$
 $t8 := B[t7]$
 $t9 := t4 + t8$
 $t11 := 40 * j$
 $t12 := t1 + t11$
 $S[t12] := t9$
 $j := j + 1$
 $goto B4$

A same value is assigned to temporary locations t2, t6, t11

Optimization of B5 (3/4)

B5:
$$t1 := 4 * i$$

 $t2 := 40 * j$
 $t3 := t1 + t2$
 $t4 := A[t3]$
 $t7 := t1 + t2$
 $t8 := B[t7]$
 $t9 := t4 + t8$
 $t12 := t1 + t2$
 $S[t12] := t9$
 $j := j + 1$
 $goto B4$

A same value is assigned to temporary locations t3, t7, t12

Optimization of B5 (4/4): the final code obtained

```
B5: t1 := 4 * i

t2 := 40 * j

t3 := t1 + t2

t4 := A[t3]

t8 := B[t3]

t9 := t4 + t8

S[t3] := t9

j := j + 1

goto B4
```

Global optimizations

Global optimization: the principle

Typical examples of global optimizations:

- constant propagation trough several basic blocks
- elimination of global redundancies
- code motion: move invariant computations outside loops
- dead code elimination

How to "extrapolate" local optimizations to the whole CFG?

- associate (local) properties to entry/exit points of BBs (set of active variables, set of available expressions, etc.)
- 2. propagate them along CFG paths
 - → enforce consistency w.r.t. the CFG structure
- 3. update each BB (and CFG edges) according to these global properties

⇒ a possible technique: data-flow analysis

Data-flow analysis

Static computation of data related properties of programs

- (local) properties φ_i associated to some pgm locations i
- set of data-flow equations:
 - \rightarrow how φ_i are transformed along pgm execution Rks:
 - forward vs backward propagation (depending on φ_i)
 - cycles inside the control flow ⇒ fix-point equations!
- a solution of this equation system:
 - \rightarrow assigns "globaly consistent" values to each φ_i Rk: such a solution may not exist . . .
- decidability may require abstractions and/or approximations

Example: elimination of redundant computations

An expression e is redundant at location i iff

- it is computed at location i
- this expression is computed on every path going from the initial location to location i
 Rk: we consider here syntactic equality
- on each of these paths: operands of e are not modified between the last computation of e and location i

Optimization is performed as follows:

- 1. computation of available expressions (data-flow analysis)
- 2. x := e is redundant at loc i if e is available at i
- 3. x := e is replaced by x := t (where t is a temp. memory containing the value of e)

Elimination of redundant computation: an example

Data-flow equations for available expressions (1/2)

For a basic block b, we note:

- In(b): available expressions when entering b
- Kill(b): expressions made non available by b (because an operand of e is modified by b)
- Gen(b): expressions made available by block b (computed in b, operands not modified afterwards)
- Out(b): available expressions when exiting b

$$Out(b) = (In(b) \setminus Kill(b)) \cup Gen(b) = F_b(In(b))$$

 F_b = transfer function of block b

Data-flow equations for available expressions (2/2)

How to compute In(b) ?

• if b is the initial block:

$$In(b) = \emptyset$$

if b is not the initial block:
 An expression e is available at its entry point iff it is available at the exit point of each predecessor of b in the CFG

$$In(b) = \bigcap_{b' \in Pre(b)} Out(b')$$

⇒ forward data-flow analysis along the CFG paths

Q: cycles inside the CFG ⇒ fix-points computations greatest vd least solutions ?

Solving the data-flow equations (1/2)

Let (E, \leq) a partial order.

- For $X \subseteq E, a \in E$:
 - a is an upper bound of X if $\forall x \in X$. $x \leq a$
 - a is a lower bound of X if $\forall x \in X$. a < x
- The least upper bound (lub, □) is the smallest upper bound
- The great lower bound (glb, \sqcap) is the largest lower bound
- (E, \leq) is a lattice if every subset of E admits a *lub* and a *glb*.
- A function $f: 2^E \to 2^E$ is monotonic if:

$$\forall X, Y \subseteq E \quad X \le Y \implies f(X) \le f(Y)$$

- $X = \{x_0, x_1, \dots x_n, \dots\} \subseteq E$ is an (increasing) chain if $x_0 \le x_1 \le \dots x_n \le \dots$
- A function $f: 2^E \to 2^E$ is (\sqcup -)continuous if \forall increasing chain X, $f(\sqcup X) = \sqcup f(X)$

Solving the data-flow equations (2/2)

Fix-point equation: solution?

- properties are finite sets of expressions ${\cal E}$
- (2^E,⊆) is a complete lattice
 ⊥: least element, ⊤: greatest element
 □: greatest lower bound, □: least upper bound
- data-flow equations are defined on monotonic and continuous operators (\cup , \cap) on $(2^{\mathcal{E}}, \subseteq)$
- Kleene and Tarski theorems:
 - the set of solution is a complete lattice
 - the greatest (resp. least) solution can be obtained by successive iterations w.r.t. the greatest (resp. least) element of $2^{\mathcal{E}}$

$$\mathsf{lfp}(f) = \sqcup \{f^i(\bot) | i \in \mathbb{N}\} \qquad \mathsf{gfp}(f) = \sqcap \{f^i(\top) | i \in \mathbb{N}\}$$

Back to the example

Generalization

- Data-flow properties are expressed as finite sets associated to entry/exit points of basic blocs: In(b), Out(b)
- For a forward analysis:
 - property is "false" (⊥) at entry of initial block
 - $\operatorname{Out}(b) = F_b(\operatorname{In}(b))$
 - In(b) depends on Out(b'), where $b' \in Pred(b)$ (\sqcap for " \forall paths", \sqcup for " \exists path")
- For a backward analysis:
 - property is "false" (⊥) at exit of final block
 - $\operatorname{In}(b) = F_b(\operatorname{Out}(b))$
 - Out(b) depends on In(b'), where $b' \in Succ(b)$

Data-flow equations: forward analysis

Forward analysis,	$\mathtt{In}(b) =$	$ \left\{ \begin{array}{c} \bot \text{if b is initial} \\ \bigsqcup_{b' \in Pre(b)} \texttt{Out}(b') \text{otherwise}. \end{array} \right. $
least fix-point	$\mathtt{Out}(b) =$	$F_b(\mathtt{In}(b))$
Forward analysis,	$\operatorname{In}(b) =$	$ \begin{cases} \bot & \text{if } b \text{ is initial} \\ & \bigcap \text{Out}(b') otherwise.} \\ & b' \in Pre(b) \end{cases} $
greatest fix-point	$\mathtt{Out}(b) =$	

Data-flow equations: backward analysis

Backward analysis,	$Out(b) = \left\{egin{array}{l} oldsymbol{oldsymbol{oldsymbol{b}}} & if \ b \ & oldsymbol{oldsymbol{oldsymbol{b}}} & In(b') otherwise. \end{array} ight.$
least fix-point	
	$\operatorname{In}(b) = F_b(\operatorname{Out}(b))$
Backward analysis,	$Out(b) = egin{cases} ota \ bis \ final \ ota \ bis \ fin(b') \ bis \ fin(b') \ bis \ fin(b') \ otherwise. \end{cases}$
greatest fix-point	${ t In}(b) = F_b({ t Out}(b))$

Active Variable

- A variable x is inactive at location i if it is not used in every CFG-path going from i to j, where j is:
 - either a final instruction
 - or an assignement to x.
- An instruction x := e at location i is useless if x is inactive at location i.

⇒ useless instuctions can be removed ...

Rk: used means

"in a right-hand side assignment or in a branch condition".

Data-flow analysis for inactive variables

We compute the set of active variables . . .

Local analysis

Gen(b) is the set of variables x s.t. x is used in block b, and, in this block, any assignement to x happens after the (first) use of x.

 $\mathtt{Kill}(i)$ is the set of variables \mathbf{x} assigned in block b.

Global analysis: backward analysis, ∃ a CFG-path (least solution)

$$\begin{array}{lll} \mathtt{Out}(b) & = & \bigcup_{b' \in Succ(b)} \mathtt{In}(b') \\ \mathtt{In}(b) & = & (\mathtt{Out}(b) \setminus \mathtt{Kill}(b)) \cup \mathtt{Gen}(b) \end{array}$$

• $\operatorname{Out}(b) = \emptyset$ if b is final.

Computation of functions Gen and Kill

Recursively defined on the syntax of a basic bloc B:

$$B ::= \varepsilon \mid B ; x := a \mid B ; if b goto 1 \mid B ; goto 1$$

```
Gen(B)
                                     = Gen_l(B, \emptyset)
Kill(B)
                                     = Kill_l(B, \emptyset)
Gen_l(\mathtt{B}\;;\;\mathtt{x}:=\mathtt{a},X) \hspace{1cm} = \hspace{1cm} Gen_l(\mathtt{B},X\setminus\{\mathtt{x}\}\cup\mathsf{Used}(\mathtt{a}))
Gen_l(B; if b goto 1, X) = Gen_l(B, X \cup Used(b))
                              = Gen_l(B, X)
Gen_l(\mathtt{B}\;;\;\mathsf{goto}\;\mathtt{l},X)
Gen_l(\varepsilon,X)
Kill_l(B; x := a, X) = Kill_l(B, X \cup \{x\})
Kill_l(B; if b goto 1, X) = Kill_l(B, X)
Kill_l(B; goto 1, X)
                             = Kill_l(B, X)
Kill_l(\varepsilon,X)
                                     = X
```

Used(e): set of variables appearing in expression e

Removal of useless instructions

- 1. Compute the sets In(B) and Out(B) of active variables at entry and exit points of each blocks.
- 2. Let $F:Code \times 2^{Var} \to Code$ F(b,X) is the code obtained when removing useless assignments inside b, assuming that variables of X are active at the end of b execution.

$$F(\mathsf{B}\;;\;\mathsf{x}\;:=\mathsf{a},X) \qquad = \begin{cases} F(B,X) & \text{if } x\not\in X\\ F(B,(X\setminus\{x\})\cup \mathsf{Used}(a)); x:=a & \text{if } x\in X \end{cases}$$

$$F(\mathsf{B}\;;\;\mathsf{if}\;\mathsf{b}\;\mathsf{goto}\;\mathsf{1},X) \qquad = F(B,X\cup \mathsf{Used}(b)); \mathsf{if}\;\mathsf{b}\;\mathsf{goto}\;\mathsf{1}$$

$$F(\mathsf{B}\;;\;\mathsf{goto}\;\mathsf{1},X) \qquad = F(B,X); \mathsf{goto}\;\mathsf{1}$$

$$F(\epsilon,X) \qquad = \epsilon$$

3. Replace each block B by F(B, Out(B)).

Rk: this transformation may produce new inactive variables ...

Constant propagation

Example:

- A variable is constant at location 1 if its value at this location can be computed at compilation time.
- At exit point of B1 and B2, i and j are constants
- At entry point of B3, i is not constant, j is constant.

Constant propagation: the lattice

- Each variable takes its value in $D = \mathbb{N} \cup \{\top, \bot\}$, where:
 - ⊤ means "non constant value"
- Partial order relation \leq : if $v \in D$ then $\bot \leq v$ and $v \leq \top$.
- The least upper bound \sqcup : for $x \in D$ and $v_1, v_2 \in \mathbb{N}$

Rk: relations \leq is extended to functions $Var \rightarrow D$

$$f1 \le f2 \text{ iff } \forall x. f1(x) \le f2(x)$$

Constant propagation: data-flow equations

- property at location 1 is a function $Var \rightarrow D$.
- Forward analysis:

$$In(b) = \begin{cases} \lambda x. \bot & \text{if b is initial,} \\ \bigsqcup_{b' \in Pred(b)} Out(b') & \text{otherwise} \end{cases}$$
 $Out(b) = F_b(In(b))$

Transfer function F_b ?

a basic block = sequence of assignements

b ::=
$$\epsilon \mid x := e ; b$$

 F_b defined by syntactic induction:

$$F_{\mathbf{x}:=\mathbf{e}}$$
 ; $\mathbf{b}(f)=F_{\mathbf{b}}(f[x\mapsto f(e)])$ (assuming variable initialization) $F_{\epsilon}(f)=f$

Pgm transformation:

$$\forall$$
 block $b, f \in In(b), f(e) = v \Rightarrow x := e$ replaced by $x := v$

Exercise

Constant propagation can be viewed as abstraction of the standard semantics where expressions values are interpreted other domain D

- 1. Write this abstract semantics for the while language in an operational style (relation $\longrightarrow_{\#}$)
- 2. Define a program transformation which removes useless computations (i.e., computations between constant operands)
- 3. Give the equations which express the correctness of this transformation

Another example of data-flow analysis

A computation of an expression e can be anticipated at loc. p iff:

- all paths from p contains a location p_i s.t. e is computed at p_i
- e operands are not modified between p and p_i

Example:

```
if (x>0)

x = i + j;

else

repeat y = (i + j) * 2; x := x+1; until x>10
```

can be changed to

Application: moving invariants outside loops

Interprocedural analysis

```
main()
{
  int i,j;
  void f(){
    int x,y;
    y = i+j; x = y;
  }
  i = 0;
  f();
  j = 1;
}
```

- ullet a dedicated basic block B_{call} for the <code>call</code> instruction
- $In(B_{call}) = In(B_{f_{in}}), Out(B_{call}) = Out(B_{f_{out}})$

Rks:

- static binding is be assumed
- parameters ?

Exercice: Computation of active variables

Control-flow analysis

- → retrieve program control structures from the CFG ? Application: loop identification
- ⇒ use of graph-theoretic notions:
 - dominator, dominance relation
 - strongly connected components

Rk1: most loops are easier to identify at syntactic level, but:

- use of goto instruction still allowed in high-level languages
- optimization performed on intermediate representations (e.g., CFG)

Rk2: other approaches can be used to identify loops

Loop identification

Node B_1 is a dominator of B_2 ($B_2 \leq B_1$) iff every path from the entry block to B_2 goes through B_1 . $Dom(B) = \{B_i | B_i \leq B\}$.

An edge (B_1, B_2) is a loop back edge iff $B_2 \leq B_1$

To find "natural loops":

- 1. find a back edge (B_1, B_2)
- 2. find $Dom(B_2)$
- 3. find blocks $B_i \in Dom(B_2)$ s.t. there is a path from B_i to B_2 not containing B_1 .

Register Allocation

Pb:

- expression operands are much efficiently accessed when liying in registers (instead of RAM)
- the "real" number of registers is finite (and usually small)
- ⇒ register allocation techniques:
 - assigns a register to each operand (variable, temporary location)
 - performs the memory exchange (LD, ST) when necessary
 - optimality ?

Several existing techniques:

- optimal code generation for arithmetic expressions
- graph-coloring techniques (more general case)
- etc.

Code generation for arithmetic expressions: example

```
code generation for (a+b) - (c - (d+e))
with 2 registers, and instruction format = OP Ri, Ri, X (where X=Ri or X=M[x])
Solution 1: one register needs to be saved
     LD R0, M[a]
     ADD RO, RO, M[b]
     LD R1, M[d]
     ADD R1, R1, M[e]
     ST R1, M[t1] ! register R1 needs to be saved ...
     LD R1, M[c]
     SUB R1, R1, M[t1]
     SUB RO, RO, R1
Solution 2: no register to save
     LD R0, M[c]
     LD R1, M[d]
     ADD R1, R1, M[e]
     SUB RO, RO, R1
     LD R1, M[a]
     ADD, R1, R1, M[b]
     SUB, R1, R1, R0
```

Code generation for arithmetic expressions: principle

Evaluation of e1 op e2, assuming:

- ullet r registers are available, evaluation of $\mathtt{e}\mathtt{i}$ requires r_i registers
- intsruction format is "op reg, reg, ad" where "ad" is a register or a memory location

Several cases:

- $r_1 > r_2$:
 - after evaluation of e1, $r_1 1$ registers available
 - $r_1 1 \ge r_2 \Rightarrow r_1 1$ registers are enough for e2
 - $\Rightarrow \boxed{r_1 r}$ register allocations are required
- $r_1 = r_2$:
 - after evaluation of e1, $r_1 1$ registers available
 - $r_1 1 < r_2$, $\Rightarrow r_2$ (= r_1) registers required for e2
 - $\Rightarrow \boxed{r_1 + 1 r}$ register allocations are required
- $r_1 < r_2$:
 - after evaluation of e1, $r_1 1$ registers available
 - $r_1 1 < r_2$, $\Rightarrow r_2$ (> r_1) registers required for e2
 - $\Rightarrow r_2 + 1 r$ register allocations are required
 - $r_2 r$ allocations are enough if e2 is evaluated first!

A two-phase algorithm

Step 1: each AST node is labeled with the number of registers required for its evaluation

 $rNb : Aexp \rightarrow N (rNb(e) is the number of registers required to evaluate e)$

$$\mathsf{rNb}(\mathsf{e}) \quad = \quad \left\{ \begin{array}{l} 1 \quad \mathsf{if} \ e \quad \mathsf{is} \ \mathsf{a} \ \mathsf{left} \ \mathsf{leaf} \\ \\ 0 \quad \mathsf{if} \ e \quad \mathsf{is} \ \mathsf{a} \ \mathsf{right} \ \mathsf{leaf} \end{array} \right. \\ \\ \mathsf{rNb}(\mathsf{e}1 \ \mathsf{op} \ \mathsf{e}2 \) \quad = \quad \left\{ \begin{array}{l} max(\mathsf{rNb}(\mathsf{e}_1), \mathsf{rNb}(\mathsf{e}_2)) \quad \mathsf{if} \ \mathsf{rNb}(\mathsf{e}_1) \neq \mathsf{rNb}(\mathsf{e}_2) \\ \\ \mathsf{rNb}(\mathsf{e}_1) + 1 \quad \mathsf{if} \ \mathsf{rNb}(\mathsf{e}_1) = \mathsf{rNb}(\mathsf{e}_2) \end{array} \right.$$

Step 2: "optimal" code generation using these labels (exercice)

- \rightarrow for a binary node e1 op e2:
- evaluate the more register demanding sub-expression first
- write the result in a register Ri (save one if necessary)
- ullet evaluate the other sub-expression, write the result in a register Rj
- 🏓 **generate** OP, Ri, Ri, Rj

A more general technique

- 1. Intermediate code is generated assuming ∞ numbers of "symbolic" registers S_i
- 2. Assign a real register R_i to each symbolic register s.t.
 - if R_i is assigned to S_i , R_j is assigned to S_j
 - then Lifetime $(S_i) \cap \mathsf{lifetime}(S_j) \neq \emptyset \Rightarrow R_i \neq R_j$

where Lifetime(S_i): sequences of pgm location where S_i is active

How to ensure this condition?

Collision graph G_C :

- Nodes denote lifetime symbolic registers: $N_i = (S_i, Lifetime(S_i))$
- Edges are the set $\{((S_1, L_1), (S_2, L_2) \mid L_1 \text{ and } L_2 \text{ overlap}\}$

 \Rightarrow register allocation with k real register = k-coloring problem of G_C

(i.e., assign a distinct colour to each pair of adjacent nodes)

Example 1

```
S1 := e1
S2 := e2
...
... S2 ...
S2 used
S3 := S1+S2
S1 and S2 used
...
S4 := S1*5
S1 used
...
S4 ...
S4 ...
S3 ...
S3 used
```

Collision Graph:

Can be colored with 2 colors \Rightarrow 2 real registers are enough as an C3 C4 - p.60/115

k-coloring in practice ? (1)

When k > 2, this problem is NP-complete . . . An efficient heuristic: Repeat: if exists a node N of G_C such that degree (N) < k(N can receive a distinct colour from all its neighbours) remove N (and corresponding edges) from G_C and push it on a stack S else (G_C is assumed to be non k-colourable) choose a node N (1) remove N from G_C (2) until G_C is empty While S is not empty pop a node from S

Rk: this algo may sometimes miss k-colorable graphs . . .

add it to G, give it a colour not used by one of its neighbours

k-coloring in practice ? (2)

What happens when there is no node of degree < k?

- (1) choose a node N to remove:
 - \rightarrow high degree in G_C , not corresponding to an inner loop, etc.
- (2) remove node N:
 - → save a register into memory before (register spilling)

Several attempts to improve this algorithm:

node coalescing:

```
\texttt{S1} := \texttt{S2}, \mathsf{Lifetime}(S1) \cap \mathsf{Lifetime}(S2) = \emptyset
```

⇒ nodes associated to S1 and S2 could be merged

pb: it increases the graph degree ...

lifetime splitting:

long lifetime increases the graph degree

⇒ split it into several parts . . .

pb: where to split?

Instruction scheduling

Motivation: exploit the instruction parallelism provided in many target architectures (e.g., VLIW processors, instruction pipeline, etc.)

Pbs:

- possible data dependancies between consecutive instructions
 (e.g., x := 3 ; y := x+1)
- possible resource conflicts between consecutive instructions (ALU, co-processors, bus, etc.)
- consecutive instructions may require various execution cycles
- etc.
- ⇒ Main technique: change the initial instruction sequence (instruction scheduling)
 - preserve the initial pgm semantics
 - better exploit the hardware resources

Rks: "loop unrolling" and "expression tree reduction" may help ...

Dependency Graph

Data dependencies:

→ execution order of 2 instructions should be preserved in the following situation:

Read After Write (RAW): inst. 2 read a data written by inst. 1

Write After Read (WAR): inst. 2 write a data read by inst. 1

Write After Write (WAW): inst. 2 write a data written by inst. 1

Dependency graph G_D

- nodes = { instructions }
- edges = $\{(i_1, d, i_2) \mid \text{there is a dependency } d \text{ from } i_1 \text{ to } i_2\}$

Rk: if we consider a basic block, G_D is a directed acyclic graph.

Any topological sort of G_D leads to a valid result (w.r.t. pgm semantics).

This sort can be influenced by several factors:

- the resources used by the instruction (∃ a static reservation table)
- the number of cycles it requires (latency)
- etc.

Example

- 1. Draw the dependency graph \mathcal{G}_D associated to the following program
- 2. Give a topological sort of G_D
- 3. Rewrite this program with a "maximal" parallelism

```
1. a := x+1
```

$$2. x := 2+y$$

3.
$$y := z+1$$

4.
$$t := a*b$$

5.
$$v := a*c$$

6.
$$v := 3+t$$

Software pipelining (overview ...)

Idea: exploit the parallelism between instrutions of distinct loop iterations

Assumptions: 3 cycles per instruction, 1 cycle delay when no dependencies

- Initial exec. sequence: A(1), B(1), C(1), A(2), B(2), C(2), ... A(k), B(k), C(k)

 ⇒ 7 cycles / iteration
- "Pipelined exec. sequence": A(1), A(2), A(3), B(1), B(2), B(3), C(1), C(2), C(3), . . .
 ⇒ 3 cycles / iteration!

(real life) pbs:

- N not always divisible by the number of instruction in the loop body for k in 1 to N-2 step 3 loop A(k); A(k+1); A(k+2) ...
- high latency instruction in the loop body
- possible overhead when k is not "large enough"
- . .

Code Generation

Overview

- 1. Introduction
- 2. The "M" Machine
- 3. Code generation for basic while
- 4. Extension 1: blocks and procedures
- 5. Extension 2: some OO features

Main issues for code generation

- input : (well-typed) source pgm AST
- output : machine level code

Expected properties for the output:

- compliance with the target machine instruction set, architecture, memory access, OS, ...
- correctness of the generated code semantically equivalent to the source pgm
- optimality w.r.t. non-functional criteria
 execution time, memory size, energy comsumption, ...

A pragmatic approach

Intermediate Representations

- Abstractions of a real target machine
 - generic code level instruction set
 - simple addressing modes
 - simple memory hierarchy

- Examples
 - a "stack machine"
 - a "register machine"
 - etc.

Rk: other intermediate representations are used in the optimization phases ...

The "M" Machine

- Machine with (unlimited) registers Ri special registers: program counter PC, frame pointer FP, stack pointer SP, register R0 (contains always 0)
- Instructions, addresses, and integers take 4 bytes in memory
- Address of variable x is E offx where:
 - E = address of the environment definition of x
 - offx = offset of x within this environment (staticaly computed, stored in the symbol table)
- Addressing modes:
 Ri, val (immediate), Ri +/- Rj, Ri +/- offset
- usual arithmetic instructions OPER: ADD, SUB, AND, etc.
- usual (conditional) branch instructions BRANCH: BA, BEQ, BGT, etc.

Instruction Set

instruction	informal semantics
OPER Ri, Rj, Rk	Ri ← Rj oper Rk
OPER Ri, Rk, val	Ri ← Rj oper val
CMP Ri, Rj	Ri-Rj (set cond flags)
LD Ri, [adr]	$Ri \leftarrow Mem[adr]$
ST Ri, [adr]	Mem[adr] ← Ri
BRANCH label	if cond then $PC \leftarrow label$
	else PC \leftarrow PC + 4
CALL label	branch to the procedure
	labelled with label
RET	end of procedure

The while language

```
p ::= d; c
d ::= var x | d; d
s ::= x := a | s; s | if b then s else s | while b s
a ::= n | x | a + a | a * a | ...
b ::= a = a | b and b | not b | ...
```

Rk: terms are well-typed

→ distinction between boolean and arithmetic expr.

Exo: Give the "M Machine" code for the following terms:

```
1. y := x+42 * (3+y)

2. if (not x=1) then x := x+1

else x := x-1; y := x;
```

Functions for Code Generation

GCStm: Stm → Code*
GCStm(s) computes the code C corresponding to statement s.

GCAExp : Exp \rightarrow Code* \times Reg GCAExp(e) returns a pair (C, i) where C is the code allowing to 1. compute the value of e, 2. store it in Ri.

 $\texttt{GCBExp}: \textbf{BExp} \times \mathcal{L} \textbf{abel} \times \mathcal{L} \textbf{abel} \rightarrow \textbf{Code}^*$

GCBExp(b, ltrue, lfalse) produces code C allowing to compute the value of b and branch to label ltrue when this value is "true" and to lfalse otherwise.

Auxilliary functions

AllocRegister : $ightarrow \mathtt{Reg}$

allocate a new register Ri

 $\texttt{newLabel} \qquad : \quad \to \texttt{Labels}$

produce a new label

GetOffset : $Var \rightarrow N$

returns the offset

corresponding to the specified name

denotes concatenation for Code sequences.

GCStm

GCStm(x := e)	=	Let	(C,i)=GCAExp(e),
			k=GetOffset(x)
		in	C∥ ST Ri, [FP-k]
GCStm (c_1 ; c_2)	=	Let	$C_1 = GCStm(c_1),$
			$\mathbf{C}_2 = \mathtt{GCStm}(\mathbf{c}_2)$
		in	$C_1 \parallel C_2$

GCStm (2)

GCStm (3)

```
GCStm (if e then c_1 else c_2)
                                                  Inext=newLabel(),
                                          Let
                                                  ltrue=newLabel(),
                                                  lfalse=newLabel()
                                                  GCBExp(e,ltrue,lfalse)||
                                            in
                                                  Itrue:
                                                  GCStm(\mathbf{c}_1)
                                                  BA Inext ||
                                                  Ifalse:||
                                                  GCStm(\mathbf{c}_2)
                                                  Inext:
```

GCAexp

GCAExp(x)	=	Let	i=AllocRegister()
			k=GetOffset(x)
		in	((LD Ri,[FP-k]),i)
GCAExp(n)	=	Let	i=AllocRegister()
		in	((ADD Ri,R0,n),i)
$GCAExp(e_1 + e_2)$	=	Let	(C_1,i_1) =GCAExp (e_1) ,
			$(\mathbf{C}_2, \mathbf{i}_2) = \mathbf{GCAExp}(\mathbf{e}_2),$
			k=AllocRegister()
		in	(($\mathbf{C}_1 \ \mathbf{C}_2 \ $ add \mathbf{R} k, \mathbf{R} i $_1$, \mathbf{R} i $_2$), \mathbf{k})

GCBexp

GCBExp ($e_1 = e_2$, Itrue, Ifalse)	=	Let	(C_1,i_1) =GCAExp (e_1) ,
			$(\mathbf{C}_2, \mathbf{i}_2) = \mathbf{GCAExp}(\mathbf{e}_2),$
		in	$C_1 \ C_2 \ $
			CMP Ri_1 , Ri_2
			BEQ Itrue
			ва Ifalse
GCBExp (e_1 et e_2 , Itrue, Ifalse)	=	Let	 =newLabel()
		in	$GCBExp(e_1,I,Ifalse)$
			I:
			GCBExp(e_2 ,ltrue,lfalse)

Exercises

code obtained for

```
• y := x+42 * (3+y)
• if (not x=1) then x := x+1
• else x := x-1; y := x;
```

- add new statements (e.g, repeat)
- add new operators (e.g, b ? e1 : e2)

Extension 1: blocks

Blocks

Syntax

$$S ::= \cdots \mid \mathsf{begin}\ D_V \; ; \; S \; \mathsf{end}$$
 $D_V ::= \mathsf{var}\ x \mid D_V \; ; \; D_V$

Rk: variables are unitialized and assumed to be of type Int

Problems raised for code generation

- → to preserve scoping rules:
- local variables should be visible inside the block
- their lifetime should be limited to block execution

Possible locations to store local variables

→ registers vs memory

Storing local variables in memory - Example 1

```
begin
  var x ; var y ; var z ;
  ...
end
```


- a memory environment is associated to each declaration Dv
- register FP contains the address of the current environment
- (static) offsets are associated to each local variables

Storing local variables in memory - Example 2

```
begin
  var x ; var y ; <s1>
  begin
  var x ; var z ; <s2>
  end ;
  <s3>
end
```


- ullet entering/leaving a block o allocate/de-allocate a mem. env.
- nested block env. have to be linked together: "Ariane link"
- \Rightarrow a stack of memory environments . . . (\sim operational semantics)

Structure of the memory

- 1: global variables
- 2: execution stack, SP = last occupied address
- 3: heap (for dynamic allocation)

Code generation for variable declarations

SizeDecl: $D_V o {f N}$

SizeDecl(d) computes the size of declarations d

SizeDecl (var x)	=	4 (x of type Int)	
SizeDecl $(d_1 : d_2)$	=	Let	$v_1 = SizeDecl(d_1),$
			$v_2 = SizeDecl(d_2)$
		in	v_1+v_2

Code Generation for blocks

```
GCStm (begin d; s; end)
                                   = Let size = SizeDecl(d),
                                              C=GCStm(s)
                                              ADD, SP, SP, -4 ||
                                       in
                                              ST FP, [SP]
                                              ADD FP, SP, 0 ||
                                              ADD SP, SP, size ||
                                              \mathbb{C} \parallel
                                              ADD SP, FP, 0 ||
                                              LD FP, [SP] ||
                                              ADD SP, SP, 4 ||
```

With the help of some auxilliary functions ...

prologue(size)	epilogue	push register(Ri)
ADD SP, SP, -4 ST FP, [SP] ADD FP, SP, 0 ADD SP, SP, size	ADD SP, FP, 0 LD FP, [SP] ADD SP, SP, +4	ADD SP, SP, -4 ST Ri, [SP]

```
GCStm(begin d ; s ; end) = Let size = SizeDecl(d), C=GCStm(s)
in Prologue(size) || C || Epilogue
```

Access to variables from a block?

```
begin

var ...

x := ...

end
```

What is the memory address of x?

- if x is a local variable (w.r.t the current block)
 adr(x) = FP + GetOffset(x)
- if x is a non local variable
 ⇒ it is defined in a "nesting" memory env. E
 ⇒ adr(x) = adr(E) + GetOffset(x)
 adr(E) can be accessed through the "Ariane link" . . .

Access to non local variables

The number n of indirections to perform on the "Ariane link" depends on the "distance" between:

- the nesting level of the current block : p
- the nesting level of the target environment : r

More precisely:

- $r \leq p$
- n = p r

 $\Rightarrow n$ can be staticaly computed ...

Example

```
begin
    var x ; /* env. E1, nesting level = 1 */
    begin
    var y ; /* env. E2, nesting level = 2 */
    begin
      var z ; /* env. E3, nesting level = 3 */
      x := y + z /* s, nesting level = 3 */
      end
    end
end
```

From statement s:

- no indirection to access to z
- 1 indirection to access to y
- 2 indirections to access to x

Code generation for variable access

- 1. the nesting level r of each identifier x is computed during type-checking;
- 2. it is associated to each occurrence of \mathbf{x} in the AST (via the symbol table)
- 3. function GCStm keeps track of the current nesting level p (incremented/decremented at each block entry/exit)

adr(x) is obtained by executing the following code:

• if r = p:

• if r < p:

Example (ctn'd)

```
begin
    var x ; /* env. E1, nesting level = 1 */
    begin
       var y ; /* env. E2, nesting level = 2 */
       begin
       var z ; /* env. E3, nesting level = 3 */
       x := y + z /* s, nesting level = 3 */
       end
    end
end
```


Code generated for statement s

Extension 2: Procedures

Syntax

Procedure declarations:

$$egin{array}{lll} D_P &::= & \operatorname{proc} p \ (FP_L) &:= & \mathbf{x}, \ FP_L \ | \ \epsilon \end{array}$$

Statements:

$$S ::= \cdots \mid \operatorname{begin} D_V \; ; D_P \; ; \; S \; \operatorname{end} \mid \operatorname{call} p(EP_L)$$
 $EP_L ::= AExp, \; EP_L \mid \epsilon$

 FP_L : formal parameters list; EP_L : effective parameters list

Rk: we assume here value-passing of integer parameters ...

Example

```
var z ;
proc p1 () is
    begin
      proc p2(x, y) is z := x + y;
      z := 0 ;
      call p2(z+1, 3);
    end
proc p3 (x) is
    begin
       var z ;
       call p1(); z := z + x;
    end
call p3(42);
```

Main issues for code generation

Procedure P is calling procedure Q . . .

Before the call:

- set up the memory environment of Q
- evaluate and "transmit" the effective parameters
- switch to the memory environment of Q
- branch to first intruction of Q

During the call:

- access to local/non local procedures and variables
- access to parameter values

After the call:

- switch back to the memory environment of P
- resume execution to the P instruction following the call

Access to non-local variables

Static binding \Rightarrow when p is executed:

- acces to the memory env. of main =
 definition environment of the callee, static link
- acces to the memory env. of r
 memory environment of the caller, dynamic link

Information exchanged between callers and callees?

- parameter values
- return address
- address of the caller memory environment (dynamic link)
- address of the callee environment definition (static link)

This information should be stored in a memory zone:

- dynamically allocated
 (exact number of procedure calls cannot be foreseen at compile time)
- accessible from both parties
 (those address could be computed by the caller and the callee)

inside the execution stack, at well defined offsets w.r.t FP

A possible "protocol" between the two parties

Before the call, the caller:

- evaluates the effective parameters
- pushes their values
- pushes the static link of the callee
- pushes the return address, and branch to the callee's 1st instruction

when it begins, the callee:

- pushes FP (dynamic link)
- assigns SP to FP (memory env. address)
- allocates its local variables on the stack

when it ends, the callee:

- de-allocates its local variables
- restores FP to caller's memory env. (dynamic link)
- branch to the return address, and pops it from the stack

After the call, the caller

de-allocates the static link and parameters

Organization of the execution stack

low addresses

Addresses, from the callee:

loc. variables: FP+d, d<0

dynamic link: FP

return address: FP+4

static link: FP+8

parameters: FP+d, d>=12

Memory environment of the callee

•••	0
Loc. var _n	←SP, FP- 4*n
Loc. var ₁	←FP
Dynamic link	←FP
Return address	←FP+4
Static link	←FP+8
Param _n	←FP+12
•••	
Param ₁	←FP+8+4*n

Code generation for a procedure declaration

 $\mathtt{GCProc}:D_P \to \mathbf{Code}^*$

GCStm(dp) computes the code C corresponding to procedure declaration dp.

Rk: this function is applied to each procedure declaration

Prologue & Epilogue

Prologue (size):

Epilogue:

```
ADD SP, FP, 0 ! SP := FP, loc. var. de-allocation
LD FP, [SP] ! restore FP

ADD SP, SP, +4

RET ! return to caller
```

RET:

```
LD PC, [SP] // ADD SP, SP, +4
```

Code Generation for a procedure call

Four steps:

- 1. evaluate and push each effective parameter
- 2. push the static link of the callee
- 3. push the return address and branch to the callee
- 4. de-allocate the parameter zone

```
GCStm(call p (ep)) = Let (C, size) = GCParam(ep)
in

C ||
Push (StaticLink(p)) ||
CALL p ||
ADD SP, SP, size+4
```

CALL p:

ADD R1, PC, +4 // Push (R1) // BA p

Parameters evaluation

GCParam: $EP_L \to \mathsf{Code}^* \times \mathsf{N}$

GCStm(ep)=(c,n) where c is the code to evaluate and "push" each effective parameter of ep and n is the size of pushed data.

```
\begin{array}{lll} & & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\
```

Static link and non local variable access?

A global (unique) name is given to each identifier:

This notation induces a partial order:

$$(Main.P_1 \cdots .P_n \leq Main.P_1' \cdots .P_{n'}') \Leftrightarrow (n \leq n' \text{ and } \forall k \leq n.P_k = P_k')$$

- For an identifier $x = Main.P_1 \cdots .P_n.x$, $x^{\bullet} = Main.P_1 \cdots .P_n$ is the definition environment of x
- For any identifier x (variable or procedure), procedure P can access x iff $x^{\bullet} \leq P$.

Examples

- A variable x declared in P can be accessed from P since $x^{\bullet} = P$ (hence $x^{\bullet} \leq P$).
- If g and x are declared in f, then x can be accessed from g since $x^{\bullet} = f$ and $f \leq g$.
- If x and f_1 are declared in Main, f_2 is declared in f_1 , then x can be accessed from f_2 since $x^{\bullet} = Main$, $f_2 = Main$. $f_1.f_2$ ($x^{\bullet} \leq f_2$)
- If p_1 and p_2 are both declared in Main, x is declared in p_1 , then x cannot be accessed from p_2 , since $x^{\bullet} = Main.p_1$ and $Main.p_1 \not\leq Main.p_2$

Code Generation for accessing (non-) local identifiers

 d_x : offset of x (variables or parameters) in its definition environment (x^{\bullet})

P: current procedure

Condition	x = variable or parameter	x = procedure
$x^{\bullet} = P$	$adr(x) = FP+d_x$	SL(x) = FP
$x^{\bullet} < P$	n-k-1 indirections	n-k-1 indirections
$x = M.P_1 \cdots P_k$	LD R,[FP+8]	LD R,[FP+8]
$P = M.P_1 \cdots P_k \cdots P_n$	LD R,[R+8]	LD R,[R+8] $\} \times (n-k-1)$
	$adr(x) = R+d_x$	SL(x)=R

Back to the 1st example

```
var z ;
proc pl () is
    begin
      proc p2(x, y) is z := x + y;
      z := 0;
      call p2(z+1, 3);
    end
proc p3 (x) is
    begin
       var z ;
       call p1(); z := z+x;
    end
call p3(42);
```

Exercice:

- give the execution stack when p2 is executed
- give the code for procedures p1 and p2

Exercice

Consider the following extensions

- functions
- other parameter modes (by reference, by result)
- dynamic binding for variables and procedures ?

Procedures used as variables or parameters

var z1;

```
var p proc (int) ; /* p is a procedure variable */
proc p1 (x : int) is z1 := x ;
proc p2 (q : proc (int)) is call q(2) ;
proc ql is
     begin
       var z1;
       proc q2 (y int) is z1 := x;
       p := q2 ;
       call p ;
     end
p := p1 ;
call p ;
call p2 (p1);
Q: what code to produce for p := ...? for call p2(p1)? for call p?
```

Information associated to a procedure at code level

```
p := q2
...
call p
```

To translate a procedure call, we need:

- the address of its 1st instruction
- the address of its environment definition
- ⇒ Variable p should store both information
- ⇒ At code level, a procedure type is a pair (address of code, address of memory environment)

Exercice: code produced for the previous example?