Global Optimization

Available Expressions

a = b;
c = b;
d=a + b

Alex Aiken, Stanford

Available Expressions

Alex Aiken, Stanford

Available Expressions

b }

+ntrb.t7""'
 S—)

O

(D
I
o)
+
o)

Alex Aiken, Stanford

Alex Aiken, Stanford

Available Expressions

{ }
a = b;
{ a =>b}
c = by
{ a=Db, ¢c=Db}
d = a + b;
{ a=b, c=b, d=a + b}
e = a + b;
d = b;

Alex Aiken, Stanford

Available Expressions

{ }

a = b;

{ a =>b}
c = by

{ a=Db, ¢c=Db}
d = a + b;
{ a=b, c=b, d=a + b}
e = a + b;
a=b, c=b,d=a+b, e=a+ b}

d = b;

Hh
|
Q
4
g

Available Expressions

{ }

a = b;

{ a=>b}
c = by

{ a=Db, ¢c=Db}
d = a + b;
{ a=b, c=b, d=a + b}
e = a + b;
{ a=b, c=b, d=a+b, e=a+ Db}
d = b;
{ a=b, c=b, d=Db, e =2a + b}
f = a + b;

Alex Aiken, Stanford

Alex Aiken, Stanford

Available Expressions

{ }
a = b;
{ a=>b}
c = by
{ a=Db, ¢c=Db}
d = a + b;
{ a=b, c=b, d=a + b}
e = a + b;
a=b, c=b,d=a+b, e=a+ b}
d = b;
{ a=b, c=b, d=Db, e =2a + b}
f = a + b;
b, c=b, d=b, e=a+b, £f=a+ Db}

Another View of Local Analyses

Alex Aiken, Stanford

Another View of Local Analyses

v

Another View of Local Analyses

Another View of Local Analyses

v

a=>b + c

Alex Aiken, Stanford

Another View of Local Analyses

v

a=>b+c Vout o fa = b+c(Vin)

Alex Aiken, Stanford

Available Expressions

a = b;
c = b;
d=a + b

Alex Aiken, Stanford

Available Expressions

a = b;
c = b;
d=a + b

Alex Aiken, Stanford

Available Expressions

Alex Aiken, Stanford

Available Expressions

b }

+ntrb.t7""'
 S—)

O

(D
I
o)
+
o)

Alex Aiken, Stanford

Alex Aiken, Stanford

Available Expressions

{ }
a = b;
{ a =>b}
c = by
{ a=Db, ¢c=Db}
d = a + b;
{ a=b, c=b, d=a + b}
e = a + b;
d = b;

Alex Aiken, Stanford

Available Expressions

{ }

a = b;

{ a =>b}
c = by

{ a=Db, ¢c=Db}
d = a + b;
{ a=b, c=b, d=a + b}
e = a + b;
a=b, c=b,d=a+b, e=a+ b}

d = b;

Hh
|
Q
4
g

Available Expressions

{ }

a = b;

{ a=>b}
c = by

{ a=Db, ¢c=Db}
d = a + b;
{ a=b, c=b, d=a + b}
e = a + b;
{ a=b, c=b, d=a+b, e=a+ Db}
d = b;
{ a=b, c=b, d=Db, e =2a + b}
f = a + b;

Alex Aiken, Stanford

Alex Aiken, Stanford

Available Expressions

{ }
a = b;
{ a=>b}
c = by
{ a=Db, ¢c=Db}
d = a + b;
{ a=b, c=b, d=a + b}
e = a + b;
a=b, c=b,d=a+b, e=a+ b}
d = b;
{ a=b, c=b, d=Db, e =2a + b}
f = a + b;
b, c=b, d=b, e=a+b, £f=a+ Db}

Available Expressions

e Direction: Forward

« Domain: Sets of expressions assigned to
variables.

 Transfer functions: Given a set of
variable assignments V and statement
a=b+c:

 Remove from V any expression containing a
as a subexpression.

 Add to V the expressiona = b + c.
» Initial value: Empty set of expressions.

Alex A

Liveness Analysis

a = b;
c = a
d =a + b
e = d;
d = a

Alex Aiken, Stanford

Liveness Analysis

a = b;
c = a
d =a + b
e = d;
d = a
f = e

Alex Aiken, Stanford

Liveness Analysis

Alex Aiken, Stanford

Alex Aiken, Stanford

Liveness Analysis

a = b;
cC = a;
d = a + b;
e = d;
{ a, b, e}
d = a;
{ b, d, e}
f = ¢e;

Alex Aiken, Stanford

Liveness Analysis

Q o)
I |
o) O

Q.
+

e

)

~

Q. ~
[} Q U.
{—

P
oot
gl g Il g o
Q)‘
oo
[—)

(D =
e ‘D .
 S—

s
o
Q.

Liveness Analysis

a = b;
cC = ay
{ a, b}
d = a + b;
{ a, b, d}
e = d;
{ a, b, e}
d = ay;
{ b, d, e}
f = e;

o
Q.

Alex Aiken, Stanford

Liveness Analysis

a = b;
{ a, b}
cC = ay
{ a, b}
d = a + b;
{ a, b, d}
e = d;
{ a, b, e}
d = ay;
{ b, d, e}
f = e;

o
Q.

Alex Aiken, Stanford

Liveness Analysis

{ b }
a = b;
{ a, b}
cC = ay
{ a, b}
d = a + b;
{ a, b, d}
e = d;
{ a, b, e}
d = ay;
{ b, d, e}
f = e;

o
Q.

Alex Aiken, Stanford

Liveness Analysis

 Direction: Backwards
« Domain: Sets of variables.

 Transfer function: Given a set of variables V
and statementa = b + c:

« Remove a from V (any previous value of a is now
dead.)

 Add b and c to V (any previous value of b or c is
now live.)

e Formally:f _, . (V) =(V-{a}) U {b, c}

« Initial value: Depends on semantics of
Alox J&%&Pag €.

Running Local Analyses

* Given an analysis (D, V, F, I) for a basic
block.

« Assume that D is “forward;” analogous for the
reverse case.

o Initially, set OUT[entry] to I.

« For each statement s, in order:

« Set IN[s] to OUT[prev], where prev is the
previous statement.

- Set OUTI[s] to f (IN[s]), where f_is the transfer
function for statement s.

Alex Aiken, Stanford

Global Optimizations

Global Analysis

» A global analysis is an analysis that

works on a control-flow graph as a
whole.

« Substantially more powertful than a local
analysis.

* (Why?)

 Substantially more complicated than a
local analysis.
* (Why?)

Alex Aiken, Stanford

Local vs. Global Analysis

 Many of the optimizations from local analysis can
still be applied globally.

 We'll see how to do this later today.

« Certain optimizations are possible in global
analysis that aren't possible locally:

* e.g. code motion: Moving code from one basic block
into another to avoid computing values unnecessarily.

« We'll explore three analyses in detail:

* Global dead code elimination.
* Global constant propagation.
« Partial redundancy elimination.

Alex Aiken, Stanford

Global Dead Code Elimination

e [.ocal dead code elimination needed to
know what variables were live on exit
from a basic block.

e This information can only be computed
as part of a global analysis.

« How do we modify our liveness analysis
to handle a CFG?

Alex Aiken, Stanford

CFGs Without Loops

Ent b =c¢ + d
niry e = c + d
x = c¢c + d y = a + b
a = b + cC
X = a + b
y = c + d

.

Exit

Alex Aiken, Stanford

CFGs Without Loops

Ent b =c¢ + d
niry e = c + d
x = c¢c + d y = a + b
a = b + cC
X = a + b
y = c + d
{x, vy}

Alex Aiken, Stanford

Exit

CFGs Without Loops

+
0. Q.

Entry >

D
I
Q Q

@ X
I
O Q

N
I

Alex Aiken, Stanford

CFGs Without Loops

+
0. Q.

Q Q

Entry >

D
I

QX
[
O Q
+

4 ‘

{x, vy}
Exit

Alex Aiken, Stanford

CFGs Without Loops

+
0. Q.

Q Q

Entry >

)
I

x = c¢c + d y = a + b
a = b + cC
{a, b, ¢, d}
{a, b, c, d}
X = a + b
y = c + d
{x, vy}
{x, vy}

Alex Aiken, Stanford

Exit

CFGs Without Loops

Entry >

+
0. Q.

)
I
Q QO

{b, c, d}
x = c¢c + d y = a + b
a = b + cC

{a, b, ¢, d}

{a, b, c, d}
X = a + b
y = c + d
{x, y}

{x, vy}
Exit

Alex Aiken, Stanford

CFGs Without Loops

0. O

+

a

Ent b =c¢c +
Yy e = c +
{b, c, d}

Xx = ¢ + d

a = b + cC

{a, b, ¢, d}

Alex Aiken, Stanford

{a, b, c,

b

d}

{a/ b/ c/
X a +
y = c +

{x, vy}

d}
b
d

{x, vy}
Exit

CFGs Without Loops

Ent I b =c¢c + d

ry e = c + d

{b, ¢, d} {a, b, c, d}
x = c¢c + d y = a + b
a = b + c

{a, b, ¢, d} {a, b, ¢, d}

Alex Aiken, Stanford

=

{a, b, c, d}
X = a + b
y = c + d
{x, y}

{x, vy}
Exit

CFGs Without Loops

Ent I b =c¢ + d
ry e = c + d
{a, b, c, d}
{b, c, d} {a, b, c, d}
x = c¢c + d y = a + b
a = Db + c

{a, b, c,

d}

Alex Aiken, Stanford

{a, b, c, d}

{a/ b/ c,
X =
y =

{x, y}

a + b
c + d

=

d}

{x, vy}
Exit

CFGs Without Loops

{a, b, ¢, d}

y = a + b

{a, ¢, d}
Ent I b =c¢ + d
ry e = c + d
{a, b, ¢, d}
{b, ¢, d}
X = c + d
a = Db + c

{a, b, c,

d}

Alex Aiken, Stanford

{a, b, c, d}

=

{a, b, c, d}
X = a + b
y = c + d
{x, y}

{x, vy}
Exit

CFGs Without Loops

{a, b, ¢, d}

y = a + b

{a, ¢, d}
Ent I b = ¢ + d
ry e = c + d
{a, b, ¢, d}
{b, c, d}
x=c+d
a = Db + c

Alex Aiken, Stanford

{a, b, c, d}

{a, b, c, d}
X = a + b
y = c + d
{x, y}

{x, vy}
Exit

CFGs Without Loops

{a, b, ¢, d}

y = a + b

{a, c, d}
Ent b= ¢ + d
niry e = c + d
{a, b, ¢, d}
{b, c, d}
a = b + c

{a, b, c,

d}

Alex Aiken, Stanford

{a, b, c, d}

=

{a, b, c, d}
X = a + b
y = c + d
{x, y}

{x, vy}
Exit

CFGs Without Loops

{a, b, ¢, d}

y =a+b

{a, c, d}
Ent b= ¢ + d
niry e = c + d
{a, b, ¢, d}
{b, c, d}
a = b + c

{a, b, c,

d}

Alex Aiken, Stanford

{a, b, c, d}

=

{a, b, c, d}
X = a + b
y = c + d
{x, y}

{x, vy}
Exit

CFGs Without Loops

{a, c, d}
Ent b =c¢ + d
nuy e = c + d

{a, b, ¢, d}

/\

{b, c, d} {a, b, ¢, d}

a = b + cC
{a, b, ¢, d} {a, b, c, d}

=

{a, b, c, d}
X = a + b
y = c + d
{x, y}

{x, vy}
Exit

Alex Aiken, Stanford

CFGs Without Loops

{a, c, d}
Ent b= ¢+ d
nuy e=c¢c+d

{a, b, ¢, d}

/\

{b, c, d} {a, b, ¢, d}

a = b + cC
{a, b, ¢, d} {a, b, c, d}

=

{a, b, c, d}
X = a + b
y = c + d
{x, y}

{x, vy}
Exit

Alex Aiken, Stanford

CFGs Without Loops

{a, c, d}
b= ¢ + d

Entry — »

{a, b, ¢, d}

/\

{b, c, d} {a, b, ¢, d}

a = b + cC
{a, b, ¢, d} {a, b, c, d}

=

{a, b, c, d}
X = a + b
y = c + d
{x, y}

{x, vy}
Exit

Alex Aiken, Stanford

CFGs Without Loops

b =c¢ + d

Entry >

/\

a = b + cC

— =

Q o
+
0. O

X
I

Alex Aiken, Stanford

Exit

CFGs Without Loops

b =c¢ + d

Entry >

Q o
+
0. O

X
I

Alex Aiken, Stanford

Exit

Major Changes, Part One

* In a local analysis, each statement has
exactly one predecessor.

* In a global analysis, each statement may
have multiple predecessors.

* A global analysis must have some means
of combining information from all
predecessors of a basic block.

Alex Aiken, Stanford

CFGs Without Loops

Ent b =c¢ + d
niry e = c + d
x = c¢c + d y = a + b
a = b + cC
X = a + b
y = c + d

.

Exit

Alex Aiken, Stanford

CFGs Without Loops

Ent b =c¢ + d
niry e = c + d
x = c¢c + d y = a + b
a = b + cC
X = a + b
y = c + d
{x, vy}

Alex Aiken, Stanford

Exit

CFGs Without Loops

+
0. Q.

Entry >

D
I
Q Q

@ X
I
O Q

N
I

Alex Aiken, Stanford

CFGs Without Loops

+
0. Q.

Q Q

Entry >

D
I

QX
[
O Q
+

4 ‘

{x, vy}
Exit

Alex Aiken, Stanford

CFGs Without Loops

+
0. Q.

Q Q

Entry >

)
I

x = c¢c + d y = a + b
a = b + cC
{a, b, ¢, d}
{a, b, c, d}
X = a + b
y = c + d
{x, vy}
{x, vy}

Alex Aiken, Stanford

Exit

CFGs Without Loops

Entry >

+
0. Q.

)
I
Q QO

{b, c, d}
x = c¢c + d y = a + b
a = b + cC

{a, b, ¢, d}

{a, b, c, d}
X = a + b
y = c + d
{x, y}

{x, vy}
Exit

Alex Aiken, Stanford

CFGs Without Loops

Entry I b =c¢+ d
e = c + d
{b, c, d}
{b, c, d}
x = c¢c + d y = a + b
a = b + c
{a, b, ¢, d}

= =

{a, b, c, d}
X = a + b
y = c + d
{x, y}

{x, vy}
Exit

Alex Aiken, Stanford

CFGs Without Loops

{c, d}

Entry] b =c¢c +

e = Cc +

{b, ¢, d
{b, ¢, d}
X = c + d
a = Db + c

{a, b, ¢, d}

Alex Aiken, Stanford

{a/ b/ c/
X
y = c +

{x, vy}

a + b

d}

d

{x, vy}
Exit

CFGs Without Loops

{c, d}
Entry I b =c¢+ d
e = c + d
{b, c, d}
{b, ¢, d}
x = c¢c + d y = a + b
a = Db + c
{a, b, ¢, d} {a, b, ¢, d}

{a, b, c, d}
X = a + b
y = c + d
{x, y}

{x, vy}
Exit

Alex Aiken, Stanford

CFGs Without Loops

{a, b, ¢, d}

y = a + b

{c, d}
Ent I b =c¢ + d
ry e = c + d
{b, c, d}
{b, ¢, d}
X = c + d
a = Db + c

{a, b, c,

d}

Alex Aiken, Stanford

{a, b, c, d}

{a, b, c, d}
X = a + b
y = c + d
{x, y}

{x, vy}
Exit

CFGs Without Loops

{a, b, ¢, d}

y = a + b

{c, d}
Ent I b =c¢ + d
ry e = c + d
{a, b, ¢, d}
{b, ¢, d}
X = c + d
a = Db + c

{a, b, c,

d}

Alex Aiken, Stanford

{a, b, c, d}

{a, b, c, d}
X = a + b
y = c + d
{x, y}

{x, vy}
Exit

CFGs Without Loops

{a, b, ¢, d}

y = a + b

{a, ¢, d}
Ent I b =c¢ + d
ry e = c + d
{a, b, ¢, d}
{b, ¢, d}
X = c + d
a = Db + c

{a, b, c,

d}

Alex Aiken, Stanford

{a, b, c, d}

=

{a, b, c, d}
X = a + b
y = c + d
{x, y}

{x, vy}
Exit

Major Changes, Part II

* In a local analysis, there is only one possible
path through a basic block.

* In a global analysis, there may be many
paths through a CFG.

« May need to recompute values multiple times
as more information becomes available.

 Need to be careful when doing this not to
loop infinitely!

 (More on that later)

Alex Aiken, Stanford

CFEFGs with Loops

« Up to this point, we've considered loop-free CFGs,
which have only finitely many possible paths.

« When we add loops into the picture, this is no longer
true.

« Not all possible loops in a CFG can be realized in the
actual program.

Alex Aiken, Stanford

CFEFGs with Loops

« Up to this point, we've considered loop-free CFGs,
which have only finitely many possible paths.

« When we add loops into the picture, this is no longer
true.

« Not all possible loops in a CFG can be realized in the
actual program.

IfZ x Goto Top;

Alex Aiken, Stanford

CFEFGs with Loops

« Up to this point, we've considered loop-free CFGs,
which have only finitely many possible paths.

« When we add loops into the picture, this is no longer
true.

« Not all possible loops in a CFG can be realized in the
actual program.

 Sound approximation: Assume that every possible
path through the CFG corresponds to a valid execution.

* Includes all realizable paths, but some additional paths as
well.

« May make our analysis less precise (but still sound).
 Makes the analysis feasible; we'll see how later.

Alex Aiken, Stanford

CFGs With Loops

CFGs With Loops

+ d
+ d

C
Entry > -

@
I

Q.
I

o)

+

@

O o
[
O o
+
Q O

Alex Aiken, Stanford

Exit

CFGs With Loops

+
0. Q.

Entry >

@
I
Q Q

Q.
I

o)

+

@

O o
[
O o
+
Q O

{a}
Exit

Alex Aiken, Stanford

Major Changes, Part III

* In a local analysis, there is always a well-
defined “first” statement to begin
processing.

* In a global analysis with loops, every
basic block might depend on every other
basic block.

» To fix this, we need to assign initial
values to all of the blocks in the CFG.

Alex Aiken, Stanford

CFGs With Loops

+
0. Q.

Entry >

@
I
Q Q

Q.
I

o)

+

@

O o
[
O o
+
Q O

{a}
Exit

Alex Aiken, Stanford

CFGs With Loops

{}

C
C

+ d
+ d

Entry >

@
I

Q.
I

o)

+

@

{}

O o
[
O o
+
Q O

{a}
Exit

Alex Aiken, Stanford

CFGs With Loops

{}

C
C

+ d
+ d

Entry >

@
I

Q.
I

o)

+

@

{}

O o
[
O o
+
Q O

{a}
Exit

Alex Aiken, Stanford

CFGs With Loops

{}

C
C

d
d

+
+

Entry >

@
I

Q.
I

o)

+

@

+
Q O

Q. o
[
- o oo

{a}
Exit

Alex Aiken, Stanford

CFGs With Loops

{}

C
C

+ d
+ d

Entry >

@
I

Q.
I

o)

+

@

{a, b, c}
a = a + b
d = b + cC

{a}

{a}
Exit

Alex Aiken, Stanford

CFGs With Loops

{}

C
C

+ d
+ d

Entry >

@
I

O, W
Il
)
+
@

{a, b, c}
a = a + b
d = b + C

{a}

{a}
Exit

Alex Aiken, Stanford

CFGs With Loops

{}

C
C

+ d
+ d

Entry >

@
I

{} {}
a=Db + c c = a +
d =a + c
{a, b, c}

{a, b, c}
a =a + b
d = Db + c

{a}

{a}
Exit

Alex Aiken, Stanford

CFGs With Loops

{}

Q Q

Entry >

Q O
+
0. Q.

{b, c} {}
a=Db + c c = a +
d =a + c
{a, b, c}

{a, b, c}
a =a + b
d = Db + c

{a}

{a}
Exit

Alex Aiken, Stanford

CFGs With Loops

{}

Entry >

Q O
Q Q
+
0. 0.

{b, c} {}
a =Db + c c = a +
d = a + c
{a, b, c}

{a, b, c}

a =a + b

d = Db + c
{a}

{a}
Exit

Alex Aiken, Stanford

CFGs With Loops

{}
Ent I b =c¢ + d
vy c = c¢c + d
{b, c}

{b, c} {}
a =Db + c c = a +
d = a + c
{a, b, c}

{a, b, c}

a =a + b

d = b + c
{a}

{a}
Exit

Alex Aiken, Stanford

CFGs With Loops

{c, d}
Entry I b=c¢+ d
c = c¢c + d
{b, c}

{b, c} {}
a = Db + c c = a +
d = a + c
{a, b, c}

{a, b, c}

a =a + b

d = b + c
{a}

{a}

Alex Aiken, Stanford .
Exit

CFGs With Loops

{c, d}
Entry I b =c¢+ d
c = c¢c + d
{b, c}

{b, c} {}
a = Db + c c = a +
d = a + c
{a, b, c}

{a, b, c}

a =a + b

d = b + c
{a}

{a}

Alex Aiken, Stanford .
Exit

CFGs With Loops

{c, d}

Ent I b = ¢ + d

Y c = c¢c + d

{b, c}
{b, c}
a = b + c
d = a + c
{a, b, c}

{a, b, c}

a =a + b

d = Db + c

{a}

Alex Aiken, Stanford .
Exit

CFGs With Loops

{c, d}

Ent I b = ¢ + d

Y c = c¢c + d

{b, c}
{b, c}
a = b + c
d = a + c
{a, b, c}

{a, b, c}

a =a + b

d = Db + c

{a}

Alex Aiken, Stanford .
Exit

CFGs With Loops

{c, d}

Ent I b = ¢ + d

Y c = c¢c + d

{b, c}
{b, c}
a = b + c
d = a + c
{a, b, c}

{a, b, c}

a =a + b

d = Db + c

{a}

Alex Aiken, Stanford

CFGs With Loops

{c, d}

Ent I b = ¢ + d

Y c = c¢c + d

{b, c}
{b, c}
a = b + c
d = a + c
{a, b, c}

{a, b, c}

a =a + b

d = Db + c

{a, c, d}

Alex Aiken, Stanford

CFGs With Loops

{c, d}

Ent I b = ¢ + d

Y c = c¢c + d

{b, c}
{b, c}
a = b + c
d =a + c
{a, b, c}

{a, b, c}

a =a + b

d = Db + c

{a, c, d}

Alex Aiken, Stanford

CFGs With Loops

{c, d}

Ent I b = ¢ + d

Y c = c¢c + d

{b, c}
{b, c}
a = b + c
d = a + c
{a, b, c}

{a, b, c}

a =a + b

d = Db + c

{a, c, d}

Alex Aiken, Stanford

CFGs With Loops

{c, d}

Ent I b =c¢c + d

Y c = c¢c + d

{b, c}
{b, c}
a = b + c
d = a + c
{a, b, c}

{a, b, c}

a =a + b

d = Db + c

{a, c, d}

Alex Aiken, Stanford

CFGs With Loops

Entry

Alex Aiken, Stanford

CFGs With Loops

{a,
b —
Entry > .
{a,
{b, c}
a = b + cC
d = a + c
{a, b, c}

Alex Aiken, Stanford

CFGs With Loops

{a, c, d}

Ent I b =c¢ + d

ry c = ¢ + d

{a, b, c}
{b, c}
a = b + c
d = a + c
{a, b, c}

{a, b, c}

a = a + b

d = b + C

{a, c, d}

Alex Aiken, Stanford

Summary of Differences

 Need to be able to handle multiple

predecessors/successors for a basic bl

 Need to be able to handle multiple pa

ock.
'hs

through the control-flow graph, and may
need to iterate multiple times to compute
the final value (but the analysis still needs

to terminate!)

 Need to be able to assign each basic block

a reasonable default value for before
we've analyzed it.

Alex Aiken, Stanford

Global Liveness Analysis

 Initially, set IN[s] = { } for each statement s.

« Set IN[exit] to the set of variables known to be live
on exit (language-specific knowledge).

« Repeat until no changes occur:

« For each statement s of the form a = b + ¢, in any order
you'd like:

- Set OUT][s] to set union of IN[p] for each successor p of s.
- Set IN[s] to (OUT[s] - a) U {b, c}.

* Yet another fixed-point iteration!

Alex Aiken, Stanford

Why Does This Work?

« To show correctness, we need to show that

» the algorithm eventually terminates, and
e when it terminates, it has a sound answer.

 Termination argument:

* Once a variable is discovered to be live during some point of the
analysis, it always stays live.

* Only finitely many variables and finitely many places where a
variable can become live.

 Soundness argument (sketch):

 Each individual rule, applied to some set, correctly updates
liveness in that set.

« When computing the union of the set of live variables, a variable is
only live if it was live on some path leaving the statement.

Alex Aiken, Stanford

Theory to the Rescue

e Building up all of the machinery to design this
analysis was tricky.

 The key ideas, however, are mostly independent
of the analysis:

 We need to be able to compute functions describing
the behavior of each statement.

 We need to be able to merge several
subcomputations together.

e We need an initial value for all of the basic blocks.

 There is a beautiful formalism that captures
many of these properties.

Alex Aiken, Stanford

Meet Semilattices

A meet semilattice is a ordering defined on a
set of elements.

 Any two elements have some meet that is the
largest element smaller than both elements.

 There is a unique top element, which is larger
than all other elements.

 Intuitively:

 The meet of two elements represents combining
information from two elements.

 The top element element represents “no information
yet” or “the least conservative possible answer.”

Alex Aiken, Stanford

Meet Semilattices for Liveness

Alex Aiken, Stanford

Meet Semilattices for Liveness

{1}

{ al} { b} { c}

{ a, b} { a, ¢} { b, ¢}

{ a, b, ¢}

Alex Aiken, Stanford

Meet Semilattices for Liveness

T
Top

Element

Alex Aiken, Stanford

Meet Semilattices for Liveness

{1}

{ al} { b} { c}

{ a, b} { a, ¢} { b, ¢}

{ a, b, ¢}

Alex Aiken, Stanford

Meet Semilattices for Liveness

{1}

{ al} { b} { c}

{ a, b} { a, ¢} { b, ¢}

{ a, b, ¢}

Alex Aiken, Stanford

Meet Semilattices for Liveness

{1}

{ al} { b} { c}

{ a, b} { a, ¢} { b, ¢}

{ a, b, ¢}

Alex Aiken, Stanford

Meet Semilattices for Liveness

{1}

{ al} { b} { c}

{ a, b} { a, ¢} { b, c}

{ a, b, ¢}

Alex Aiken, Stanford

Formal Definitions

A meet semilattice is a pair (D, A), where

e D is a domain of elements.
* A IS a meet operator that is

- idempotent: x A x =X
- commutative: x Ay =y A X
- associative: (X Ay)Az=X A (VA 2)
 If X A y =z, we say that z is the meet or
(greatest lower bound) of x and .

 Every meet semilattice has a top element
denoted T such that T A x = x for all x.

Alex Aiken, Stanford

An Example Semilattice

e The set of natural numbers and the max
function.

« Jdempotent
« max{a, a} = a
« Commutative
« max{a, b} = max{b, a}
» Associative
« max{a, max{b, c}} = max{max{a, b}, c}
« Top element is O:

« max{0, a} = a

Alex Aiken, Stanford

A Semilattice for Liveness

e Sets of live variables and the set union
operation.

 [dempotent:
e XUX=X
« Commutative:
e XUYy=yUZX
e Associative:
e xXUY)UzZz=XxU (YU 2)
« Top element:
« The empty set: J Ux =x

Alex Aiken, Stanford

Semilattices and Program Analysis

« Semilattices naturally solve many of the problems
we encounter in global analysis.

« How do we combine information from multiple
basic blocks?

« Use the meet of all of those blocks.

« What value do we give to basic blocks we haven't
seen yet?

« Use the top element.

« How do we know that the algorithm always
terminates?

« Actually, we still don't! More on that later.

Alex Aiken, Stanford

A General Framework

* A global analysis is a tuple (D, V, A, F, I), where

D is a direction (forward or backward)

- The order to visit statements within a basic block, not the
order in which to visit the basic blocks.

V is a set of values.

A is a meet operator over those values.

F is a set of transfer functions f: V-V
* I is an initial value.

 The only difference from local analysis is the
introduction of the meet operator.

Alex Aiken, Stanford

Running Global Analyses

Assume that (D, V, A, F, I) is a forward analysis.
Set OUT[s] = T for all statements s.
Set OUT[begin] = 1.

Repeat until no values change:

« For each statement s with predecessors
P, P,P.:
- Set IN[s] = OUT[p,] A OUT[p,] A ... A OUT[p,]
- Set OUT[s] = f_(IN[s])

e The order of this iteration does not matter.

Alex Aiken, Stanford

For Comparison

e Set IN[s] = T for all - SetIN[s]={ } for each

statement s. statement s.
. « Set IN[exit] to the set
* Set IN[exit] = L. of variables known to

« Repeat until no be live on exit.

changes occur: * Repeat until no
changes occur:

For each statement s: « For each statement s of

- Set OUTIs] = the forma =b + c:
IN[XJ/\"-AIN[XH] - Set OUT(s] to set union of
where X, ..., X _are IN[x] for each successor x

! of s.

successors of s.
Alex Aiken, Stanf - Set IN[S] to
="8et IN[s] = f, (OUT[s]) (OUTIs] - a) U {b, c}.

The Dataflow Framework

» This form of analysis is called the
dataflow framework.

 Can be used to easily prove an analysis is
sound.

« With certain restrictions, can be used to
prove that an analysis eventually
terminates.

« Again, more on that later.

Alex Aiken, Stanford

Global Constant Propagation

 Constant propagation is an
optimization that replaces each variable
that is known to be a constant value with
that constant.

 An elegant example of the dataflow
framework.

Alex Aiken, Stanford

Global Constant Propagation

start

>

X

6;

/\

Y

Xy

Alex Aiken, Stanfor

Z:

Yr

Global Constant Propagation

start

>

X

6;

/\

y

X,

Alex Aiken, Stanfor

Z:

Yr

Global Constant Propagation

start

>

X

6;

/\

y

6;

Alex Aiken, Stanfor

Z:

Yr

Constant Propagation Analysis

* In order to do a constant propagation, we need to
track what values might be assigned to a variable
at each program point.

« Every variable will either

 Never have a value assigned to it,

 Have a single constant value assigned to it,

« Have two or more constant values assigned to it, or
« Have a known non-constant value.

« Our analysis will propagate this information
throughout a CFG to identify locations where a
value is constant.

Alex Aiken, Stanford

Properties of Constant Propagation

« For now, consider just some single variable x.

« At each point in the program, we know one of three
things about the value of x:

« x is definitely not a constant, since it's been assigned two
values or assigned a value that we know isn't a constant.

« x is definitely a constant and has value k.
« We have never seen a value for x.

e Note that the first and last of these are not the same!

« The first one means that there may be a way for x to have
multiple values.

« The last one means that x never had a value at all.

Alex Aiken, Stanford

Defining a Meet Operator

 The meet of any two different constants is Not a
Constant.

o (If the variable might have two different values on
entry to a statement, it cannot be a constant.)

« The meet of Not a Constant and any other value is
Not a Constant.

e (If on some path the value is known not to be a
constant, then on entry to a statement its value can't
possibly be a constant.)

 The meet of Undefined and any other value is that
other value.

 (If x has no value on some path and does have a value

e e O, SOMe other path, we can just pretend it always had

the assigned value.)

A Semilattice for Constant Propagation

* One possible semilattice for this analysis is
shown here:

Undefined

- - Not a Constant

Alex Aiken, Stanford

A Semilattice for Constant Propagation

* One possible semilattice for this analysis is
shown here:

Undefined

- - Not a Constant

This lattice is infinitely wide:

Alex Aiken, Stanford

A Semilattice for Constant Propagation

* One possible semilattice for this analysis is
shown here:

Undefined

- - Not a Constant

Alex Aiken, Stanford

A Semilattice for Constant Propagation

* One possible semilattice for this analysis is
shown here:

Undefined

Not a Constant
 Note:

« The meet of any two different constants is Not a
Constant.

 The meet of Undefined and any value is that value.

nex silen i@ meet of Not a Constant and any value is Not a
Constant.

Global Constant Propagation

start

>

X

6;

/\

Y

Xy

Alex Aiken, Stanfor

Z:

Yr

Global Constant Propagation

start

>

X = 06;
Undefined

Yy = Xy
Undefined

Alex Aiker

end
, Stanford

/\

zZ = V;
Undefined

- =

W = X;
Undefined

\

z = X;
Undefined

\

x = 4;
Undefined

Global Constant Propagation

start

Undefined

>

X = 06;
Undefined

Yy = Xy
Undefined

Alex Aiker

end
, Stanford

A//////////\\\\\\\\\\L

zZ = V;
Undefined

- =

W = X;
Undefined

\

z = X;
Undefined

\

x = 4;
Undefined

Global Constant Propagation

start

Undefined

>

X = 6;
Undefined

Yy = Xy
Undefined

Alex Aiker

end
, Stanford

A//////////\\\\\\\\\\L

zZ = V;
Undefined

- =

W = X;
Undefined

\

z = X;
Undefined

\

x = 4;
Undefined

Global Constant Propagation

start

Undefined

>

Undefined
X = 6;
Undefined

Yy = Xy
Undefined

Alex Aiker

end
, Stanford

A//////////\\\\\\\\\\L

zZ = V;
Undefined

- =

W = X;
Undefined

\

z = X;
Undefined

\

x = 4;
Undefined

Global Constant Propagation

start

Undefined

>

Undefined
X = 6;

6

Yy = Xy
Undefined

Alex Aiker

end
, Stanford

A//////////\\\\\\\\\\L

zZ = V;
Undefined

- =

W = X;
Undefined

\

z = X;
Undefined

\

x = 4;
Undefined

Global Constant Propagation

start

Undefined

>

Undefined
X = 06;

6

Yy = Xy
Undefined

Alex Aiker

end
, Stanford

A//////////\\\\\\\\\\L

zZ = V;
Undefined

—_— =

W = X;
Undefined

\

z = X;
Undefined

\

x = 4;
Undefined

Global Constant Propagation

start

Undefined

>

Undefined
X = 06;

6

6
Yy = Xy
Undefined

Alex Aiker

end
, Stanford

A//////////\\\\\\\\\\L

zZ = V;
Undefined

—_— =

W = X;
Undefined

\

z = X;
Undefined

\

x = 4;
Undefined

Global Constant Propagation

Undefined
> X = 0;
6

A//////////\\\\\\\\\\L

Yy = X; z = Yy
6 Undefined

—_— =

W = X;
Undefined

\

start
Undefined

z = X;
Undefined

\

Alex Aiken, Stanford Undefined

Global Constant Propagation

Undefined
> X = 0;
6

A//////////\\\\\\\\\\L

Yy = X; z =Y
6 Undefined

— =

W = X;
Undefined

\

start
Undefined

z = X;
Undefined

\

Alex Aiken, Stanford Undefined

Global Constant Propagation

Undefined
start > % — 6
Undefined 6 ’
6
Yy = Xy z =Yy
6 Undefined
\/ Undefined
W = X; /T—\
Undefined .. -1 0 +1 ...
y "\\\\\jsilzkjégﬁijZi////4'
Not a Constant
z = X;
Undefined
v
_ end = x = 4;
Alex Aiken, Stanford Undefined

Global Constant Propagation

Undefined
start > % — 6
Undefined 6 ’
6
Yy = Xy z =Yy
6 Undefined
\/ Undefined
¥ i M
W = X;
Undefined .. -1 0 +1 ...
y "\\\\\jsilzkjégﬁijZi////4'
Not a Constant
z = X;
Undefined
v
_ end = x = 4;
Alex Aiken, Stanford Undefined

Global Constant Propagation

Undefined
> X = 0;
6

A//////////\\\\\\\\\\L

Yy = X; z =Y
6 Undefined

— =

6
W = X;
Undefined

\

start
Undefined

z = X;
Undefined

\

Alex Aiken, Stanford Undefined

Global Constant Propagation

start
Undefined

Undefined
X = 06;

6

A//////////\\\\\\\\\\L

Alex Aiker

zZ = V;
Undefined

z = X;
Undefined

\

end =
, Stanford

x = 4;
Undefined

Global Constant Propagation

start
Undefined

Undefined
X = 06;

6

A//////////\\\\\\\\\\L

Alex Aiker

zZ = V;
Undefined

z = X;
Undefined

\

end =
, Stanford

x = 4;
Undefined

Global Constant Propagation

start
Undefined

Undefined
X = 06;

6

A//////////\\\\\\\\\\L

Alex Aiker

zZ = V;
Undefined

z = X;
Undefined

\

end =
, Stanford

x = 4;
Undefined

Global Constant Propagation

Alex Aiken, Stanfor

zZ = V;
Undefined

Undefined
start > x — G-
Undefined 6 ’
6
Yy = Xy
6
6
w = X
6
v
6
Z = X;
6
\/
end = x = 4;
Stanford

Undefined

Global Constant Propagation

start
Undefined

Undefined
X = 06;

6

A//////////\\\\\\\\\\L

Alex Aiken, Stanfor

zZ = V;
Undefined

x = 4;
Undefined

Global Constant Propagation

start
Undefined

Undefined
X = 06;

6

A//////////\\\\\\\\\\L

Alex Aiken, Stanfor

zZ = V;
Undefined

x = 4;
Undefined

Global Constant Propagation

Alex Aiken, Stanfo

zZ = V;
Undefined

Undefined
start > x — G-
Undefined 6 ’
6
= X,
6
6
W = X;
6
v
6
Z = X
6
v
6
end = x = 4
Stanford 4

Global Constant Propagation

Alex Aiken, Stanfo

zZ = V;
Undefined

Undefined
start > x — G-
Undefined 6 ’
6
= X,
6
6
W = X;
6
v
6
Z = X
6
v
6
end = x = 4
Stanford 4

Global Constant Propagation

Alex Aiken, Stanfo

zZ = V;
Undefined

Undefined
start > x — G-
Undefined 6 ’
6 6
= X,
6
6
W = X;
6
v
6
Z = X
6
v
6
end = x = 4
Stanford 4

Global Constant Propagation

Undefined
X = 06;

start
Undefined

>

6

A//////////\\\\\\\\\\L

Y

6

(o)}

Xy

Alex Aiken, Stanfor

N

6

o)
=

=z

X

N

o)y € O

X

X

o)y € O

>
D~

Global Constant Propagation

Undefined
X = 06;

start
Undefined

>

6

A//////////\\\\\\\\\\L

Y

6

(o)}

Xy

Alex Aiken, Stanfor

N

6

o)
=

=z

X

N

o)y € O

X

X

o)y € O

>
D~

Global Constant Propagation

Undefined
X = 6;

start
Undefined

>

6

A//////////\\\\\\\\\\L

Y

6

(o)}

Xy

Alex Aiken, Stanfor

N

6

o)
=

=z

X

N

o)y € O

X

X

o)y € O

>
D~

Global Constant Propagation

Undefined
X = 06;

start
Undefined

>

6

A//////////\\\\\\\\\\L

Y

6

(o))}

Xy

Alex Aiken, Stanfor

N

6

o)
=

=z

X

N

o)y € O

X

X

o)y € O

>
D~

Global Constant Propagation

Undefined
X = 06;

start
Undefined

>

6

A//////////\\\\\\\\\\L

Y

6

(o)}

Xy

Alex Aiken, Stanfor

N

6

o)
=

=

X

N

o)y € O

X

X

o)y € O

>
D~

Global Constant Propagation

Undefined
X = 06;

start
Undefined

>

6

A//////////\\\\\\\\\\L

Y

6

(o)}

Xy

Alex Aiken, Stanfor

N

6

o)
=

=z

X

N

o)y €4 O

X

X

o)y € O

>
D~

Global Constant Propagation

Undefined
start > x — G-
Undefined 6 ’
6 6
Yy = Xy Z =Y
6 6

\/ Undefined
o T

-1 0 +1

Not a Constant

Alex Aiken, Stanfor

Global Constant Propagation

start
Undefined

> X

6

Undefined

6;

Alex Aiker

Z

Xy

end =
, Stanford

P R

Undefined

0

Not a Constant

+1

Global Constant Propagation

start
Undefined

>

Undefined
X = 06;

6

A//////////\\\\\\\\\\L

Alex Aiken, Stanfor

Not Const
z = X;

6

\/
6

X 4,

4

Global Constant Propagation

start
Undefined

>

Undefined
X = 06;

6

A//////////\\\\\\\\\\L

Alex Aiken, Stanfor

Not Const
z = X;
Not Const

\/
6
4

X 4,

Global Constant Propagation

start
Undefined

>

Undefined
X = 06;

6

A//////////\\\\\\\\\\L

Alex Aiken, Stanfor

Not Const
z = X3
Not Const

v
6
y

X 4,

Global Constant Propagation

Undefined
> X = 0;
6

A//////////\\\\\\\\\\L

start
Undefined

Not Const

Z = X;
Not Const
v
Not Const
end = x = 4;

Alex Aiken, Stanford 4

Global Constant Propagation

Undefined
> X = 0;
6

A//////////\\\\\\\\\\L

start
Undefined

Not Const

Z = X;
Not Const
v
Not Const
end = x = 4;

Alex Aiken, Stanford 4

Global Constant Propagation

Undefined
> X = 0;
6

A//////////\\\\\\\\\\L

start
Undefined

Not Const

Z = X;
Not Const
v
Not Const
end = x = 4;

Alex Aiken, Stanford 4

Global Constant Propagation

Undefined
> X = 0;
6

A//////////\\\\\\\\\\L

start
Undefined

Not Const

Z = X;
Not Const
v
Not Const
end = x = 4;

Alex Aiken, Stanford 4

Global Constant Propagation

Undefined
> X = 0;
6

A//////////\\\\\\\\\\L

start
Undefined

Not Const

Z = X;
Not Const
v
Not Const
end = x = 4;

Alex Aiken, Stanford 4

Global Constant Propagation

Undefined
> X = 0;
6

A//////////\\\\\\\\\\L

start
Undefined

Not Const

Z = X;
Not Const
v
Not Const
end = x = 4;

Alex Aiken, Stanford 4

Global Constant Propagation

Undefined
> X = 0;
6

A//////////\\\\\\\\\\L

start
Undefined

Not Const

Z = X;
Not Const
\/
Not Const
end = x = 4;

Alex Aiken, Stanford 4

Global Constant Propagation

Undefined
> X = 0;
6

A//////////\\\\\\\\\\L

start
Undefined

Not Const

Z = X;
Not Const
v
Not Const
end = x = 4;

Alex Aiken, Stanford 4

Global Constant Propagation

Undefined
> X = 0;
6

A//////////\\\\\\\\\\L

start
Undefined

Not Const

Z = X;
Not Const
v
Not Const
end = x = 4;

Alex Aiken, Stanford 4

Global Constant Propagation

Undefined
> X = 0;
6

A//////////\\\\\\\\\\L

start
Undefined

Not Const

Z = X;
Not Const
v
Not Const
end = x = 4;

Alex Aiken, Stanford 4

Global Constant Propagation

Undefined
> X = 0;
6

start
Undefined

Not Const

Z = X;
Not Const
v
Not Const
end = x = 4;

Alex Aiken, Stanford 4

Global Constant Propagation

Undefined
X = 06;

6

Alex Aiker

Not Const
z = X3
Not Const

\

start
Undefined
6
y iy
6
end =
, Stanford

Not Const
x = 4;
4

Global Constant Propagation

Undefined
> X = 0;
6

start
Undefined

Not Const

Z = X;
Not Const
v
Not Const
end = x = 4;

Alex Aiken, Stanford 4

Global Constant Propagation

Undefined
> X = 0;
6

start
Undefined

Not Const

Z = X;
Not Const
v
Not Const
end = x = 4;

Alex Aiken, Stanford 4

Global Constant Propagation

Undefined
> X = 0;
6

start
Undefined

Not Const

Z = X;
Not Const
v
Not Const
end = x = 4;

Alex Aiken, Stanford 4

Global Constant Propagation

Undefined
> X = 0;
6

start
Undefined

Not Const

Z = X;
Not Const
v
Not Const
end = x = 4;

Alex Aiken, Stanford 4

Global Constant Propagation

start

>

X

6;

/\

Y

6;

Alex Aiken, Stanfor

Z:

Yr

Dataftlow for Constant Propagation

e Direction: Forward
e Semilattice: Defined earlier
e Transfer functions:

L, (V) =k (assign a constant)

(V) = Not a Constant (assign non-constant)

a+b

y 14} (V) = (unrelated assignment)

e Initial value: x is Undefined

* (When might we use some other value?)

Alex Aiken, Stanford

