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Another View of Local Analyses
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Available Expressions

● Direction: Forward
● Domain: Sets of expressions assigned to 

variables.
● Transfer functions: Given a set of 

variable assignments V and statement 
a = b + c:
● Remove from V any expression containing a 

as a subexpression.
● Add to V the expression a = b + c.

● Initial value: Empty set of expressions.
Alex Aiken, Stanford



  

Liveness Analysis
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Liveness Analysis
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Liveness Analysis

● Direction: Backwards
● Domain: Sets of variables.
● Transfer function: Given a set of variables V 

and statement a = b + c:
● Remove a from V (any previous value of a is now 

dead.)
● Add b and c to V (any previous value of b or c is 

now live.)

● Formally: fa = b + c (V) = (V – {a}) ∪ {b, c}

● Initial value: Depends on semantics of 
language.
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Running Local Analyses

● Given an analysis (D, V, F, I) for a basic 
block.
● Assume that D is “forward;” analogous for the 

reverse case.

● Initially, set OUT[entry] to I.
● For each statement s, in order:

● Set IN[s] to OUT[prev], where prev is the 
previous statement.

● Set OUT[s] to fs(IN[s]), where fs is the transfer 
function for statement s.
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Global Optimizations

Alex Aiken, Stanford



  

Global Analysis

● A global analysis is an analysis that 
works on a control-flow graph as a 
whole.

● Substantially more powerful than a local 
analysis.
● (Why?)

● Substantially more complicated than a 
local analysis.
● (Why?)
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Local vs. Global Analysis

● Many of the optimizations from local analysis can 
still be applied globally.
● We'll see how to do this later today.

● Certain optimizations are possible in global 
analysis that aren't possible locally:
● e.g. code motion: Moving code from one basic block 

into another to avoid computing values unnecessarily.

● We'll explore three analyses in detail:
● Global dead code elimination.
● Global constant propagation.
● Partial redundancy elimination.
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Global Dead Code Elimination

● Local dead code elimination needed to 
know what variables were live on exit 
from a basic block.

● This information can only be computed 
as part of a global analysis.

● How do we modify our liveness analysis 
to handle a CFG?
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Major Changes, Part One

● In a local analysis, each statement has 
exactly one predecessor.

● In a global analysis, each statement may 
have multiple predecessors.

● A global analysis must have some means 
of combining information from all 
predecessors of a basic block.
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CFGs Without Loops
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Major Changes, Part II

● In a local analysis, there is only one possible 
path through a basic block.

● In a global analysis, there may be many 
paths through a CFG.

● May need to recompute values multiple times 
as more information becomes available.

● Need to be careful when doing this not to 
loop infinitely!
● (More on that later)
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CFGs with Loops

● Up to this point, we've considered loop-free CFGs, 
which have only finitely many possible paths.

● When we add loops into the picture, this is no longer 
true.

● Not all possible loops in a CFG can be realized in the 
actual program.

Sound approximation: Assume that every possible 
path through the CFG corresponds to a valid execution.

Includes all realizable paths, but some additional paths as 
well.

May make our analysis less precise (but still sound).

Makes the analysis feasible; we'll see how later.
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x = 1

IfZ x Goto Top;

x = 0
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CFGs With Loops

Entry

{a}
Exit

{a, d}
b = c + d
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d = a + c
{a, b, c}
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CFGs With Loops
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Major Changes, Part III

● In a local analysis, there is always a well-
defined “first” statement to begin 
processing.

● In a global analysis with loops, every 
basic block might depend on every other 
basic block.

● To fix this, we need to assign initial 
values to all of the blocks in the CFG.

Alex Aiken, Stanford



  

CFGs With Loops

Entry

{a}
Exit

{a, d}
b = c + d
c = c + d
{a, b, c}

{a, b, c}
a = a + b
d = b + c

{a}

{b, c}
a = b + c
d = a + c
{a, b, c}

{a, b}
c = a + b

{a, b}

Alex Aiken, Stanford



  

CFGs With Loops

Entry

{a}
Exit

{}
b = c + d
c = c + d
{a, b, c}

{}
a = a + b
d = b + c

{a}

{}
a = b + c
d = a + c
{a, b, c}

{}
c = a + b

{a, b}

Alex Aiken, Stanford



  

CFGs With Loops

Entry

{a}
Exit

{}
b = c + d
c = c + d
{a, b, c}

{}
a = a + b
d = b + c

{}
a = b + c
d = a + c
{a, b, c}

{}
c = a + b

{a, b}

Alex Aiken, Stanford



  

CFGs With Loops

Entry

{a}
Exit

{}
b = c + d
c = c + d
{a, b, c}

{}
a = a + b
d = b + c

{a}

{}
a = b + c
d = a + c
{a, b, c}

{}
c = a + b

{a, b}

Alex Aiken, Stanford



  

CFGs With Loops

Entry

{a}
Exit

{}
b = c + d
c = c + d
{a, b, c}

{a, b, c}
a = a + b
d = b + c

{a}

{}
a = b + c
d = a + c
{a, b, c}

{}
c = a + b

{a, b}

Alex Aiken, Stanford



  

CFGs With Loops

Entry

{a}
Exit

{}
b = c + d
c = c + d
{a, b, c}

{a, b, c}
a = a + b
d = b + c

{a}

{}
a = b + c
d = a + c

{}
c = a + b

{a, b}

Alex Aiken, Stanford



  

CFGs With Loops

Entry

{a}
Exit

{}
b = c + d
c = c + d
{a, b, c}

{a, b, c}
a = a + b
d = b + c

{a}

{}
a = b + c
d = a + c
{a, b, c}

{}
c = a + b

{a, b}

Alex Aiken, Stanford



  

CFGs With Loops

Entry

{a}
Exit

{}
b = c + d
c = c + d
{a, b, c}

{a, b, c}
a = a + b
d = b + c

{a}

{b, c}
a = b + c
d = a + c
{a, b, c}

{}
c = a + b

{a, b}

Alex Aiken, Stanford



  

CFGs With Loops

Entry

{a}
Exit

{}
b = c + d
c = c + d

{a, b, c}
a = a + b
d = b + c

{a}

{b, c}
a = b + c
d = a + c
{a, b, c}

{}
c = a + b

{a, b}

Alex Aiken, Stanford



  

CFGs With Loops

Entry

{a}
Exit

{}
b = c + d
c = c + d
{b, c}

{a, b, c}
a = a + b
d = b + c

{a}

{b, c}
a = b + c
d = a + c
{a, b, c}

{}
c = a + b

{a, b}

Alex Aiken, Stanford



  

CFGs With Loops

Entry

{a}
Exit

{c, d}
b = c + d
c = c + d
{b, c}

{a, b, c}
a = a + b
d = b + c

{a}

{b, c}
a = b + c
d = a + c
{a, b, c}

{}
c = a + b

{a, b}

Alex Aiken, Stanford



  

CFGs With Loops

Entry

{a}
Exit

{c, d}
b = c + d
c = c + d
{b, c}

{a, b, c}
a = a + b
d = b + c

{a}

{b, c}
a = b + c
d = a + c
{a, b, c}

{}
c = a + b

Alex Aiken, Stanford



  

CFGs With Loops

Entry

{a}
Exit

{c, d}
b = c + d
c = c + d
{b, c}

{a, b, c}
a = a + b
d = b + c

{a}

{b, c}
a = b + c
d = a + c
{a, b, c}

{}
c = a + b

{a, b, c}

Alex Aiken, Stanford



  

CFGs With Loops

Entry

{a}
Exit

{c, d}
b = c + d
c = c + d
{b, c}

{a, b, c}
a = a + b
d = b + c

{a}

{b, c}
a = b + c
d = a + c
{a, b, c}

{a, b}
c = a + b

{a, b, c}

Alex Aiken, Stanford



  

CFGs With Loops

Entry

{a}
Exit

{c, d}
b = c + d
c = c + d
{b, c}

{a, b, c}
a = a + b
d = b + c

{a}

{b, c}
a = b + c
d = a + c
{a, b, c}

{a, b}
c = a + b

{a,{a, b, c} b}

Alex Aiken, Stanford



  

CFGs With Loops

Entry

{a}
Exit

{c, d}
b = c + d
c = c + d
{b, c}

{a, b, c}
a = a + b
d = b + c
{a, c, d}

{b, c}
a = b + c
d = a + c
{a, b, c}

{a, b}
c = a + b

{a,{a, b, c} b}

Alex Aiken, Stanford



  

CFGs With Loops

Entry

{a}
Exit

{c, d}
b = c + d
c = c + d
{b, c}

{a, b, c}
a = a + b
d = b + c
{a, c, d}

{b, c}
a = b + c
d = a + c
{a, b, c}

{a, b}
c = a + b

{a,{a, b, c} b}

Alex Aiken, Stanford



  

CFGs With Loops

Entry

{a}
Exit

{c, d}
b = c + d
c = c + d
{b, c}

{a, b, c}
a = a + b
d = b + c
{a, c, d}

{b, c}
a = b + c
d = a + c
{a, b, c}

{a, b}
c = a + b

{a, b, c}

Alex Aiken, Stanford



  

CFGs With Loops

Entry

{a}
Exit

{c, d}
b = c + d
c = c + d
{b, c}

{a, b, c}
a = a + b
d = b + c
{a, c, d}

{b, c}
a = b + c
d = a + c
{a, b, c}

{a, b}
c = a + b

{a, b, c}

Alex Aiken, Stanford



  

CFGs With Loops

Entry

{a}
Exit

{c, d}
b = c + d
c = c + d
{a, b, c}

{a, b, c}
a = a + b
d = b + c
{a, c, d}

{b, c}
a = b + c
d = a + c
{a, b, c}

{a, b}
c = a + b

{a, b, c}

Alex Aiken, Stanford



  

CFGs With Loops

Entry

{a}
Exit

{a, c, d}
b = c + d
c = c + d
{a, b, c}

{a, b, c}
a = a + b
d = b + c
{a, c, d}

{b, c}
a = b + c
d = a + c
{a, b, c}

{a, b}
c = a + b

{a, b, c}

Alex Aiken, Stanford



  

CFGs With Loops

Entry

{a}
Exit

{a, c, d}
b = c + d
c = c + d
{a, b, c}

{a, b, c}
a = a + b
d = b + c
{a, c, d}

{b, c}
a = b + c
d = a + c
{a, b, c}

{a, b}
c = a + b

{a, b, c}

Alex Aiken, Stanford



  

Summary of Differences

● Need to be able to handle multiple 
predecessors/successors for a basic block.

● Need to be able to handle multiple paths 
through the control-flow graph, and may 
need to iterate multiple times to compute 
the final value (but the analysis still needs 
to terminate!)

● Need to be able to assign each basic block 
a reasonable default value for before 
we've analyzed it.
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Global Liveness Analysis

● Initially, set IN[s] = { } for each statement s.
● Set IN[exit] to the set of variables known to be live 

on exit (language-specific knowledge).
● Repeat until no changes occur:

● For each statement s of the form a = b + c, in any order 
you'd like:
– Set OUT[s] to set union of IN[p] for each successor p of s.
– Set IN[s] to (OUT[s] – a) ∪ {b, c}.

● Yet another fixed-point iteration!
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Why Does This Work?

● To show correctness, we need to show that
● the algorithm eventually terminates, and
● when it terminates, it has a sound answer.

● Termination argument:
● Once a variable is discovered to be live during some point of the 

analysis, it always stays live.
● Only finitely many variables and finitely many places where a 

variable can become live.

● Soundness argument (sketch):
● Each individual rule, applied to some set, correctly updates 

liveness in that set.
● When computing the union of the set of live variables, a variable is 

only live if it was live on some path leaving the statement.
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Theory to the Rescue

● Building up all of the machinery to design this 
analysis was tricky.

● The key ideas, however, are mostly independent 
of the analysis:
● We need to be able to compute functions describing 

the behavior of each statement.
● We need to be able to merge several 

subcomputations together.
● We need an initial value for all of the basic blocks.

● There is a beautiful formalism that captures 
many of these properties.
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Meet Semilattices

● A meet semilattice is a ordering defined on a 
set of elements.

● Any two elements have some meet that is the 
largest element smaller than both elements.

● There is a unique top element, which is larger 
than all other elements.

● Intuitively:
● The meet of two elements represents combining 

information from two elements.
● The top element element represents “no information 

yet” or “the least conservative possible answer.”
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Meet Semilattices for Liveness
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Meet Semilattices for Liveness

{ }

{ a } { b } { c }

{ a, b } { a, c } { b, c }

{ a, b, c }
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{ }

{ a } { b } { c }
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{ a, b, c }

Top 
Element
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Formal Definitions

● A meet semilattice is a pair (D, ∧), where
● D is a domain of elements.
● ∧ is a meet operator that is

– idempotent: x ∧ x = x
– commutative: x ∧ y = y ∧ x
– associative: (x ∧ y) ∧ z = x ∧ (y ∧ z)

● If x ∧ y = z, we say that z is the meet or 
(greatest lower bound) of x and y.

● Every meet semilattice has a top element 
denoted ⊤ such that ⊤∧ x = x for all x.
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An Example Semilattice

● The set of natural numbers and the max 
function.

● Idempotent
● max{a, a} = a

● Commutative
● max{a, b} = max{b, a}

● Associative
● max{a, max{b, c}} = max{max{a, b}, c}

● Top element is 0:
● max{0, a} = a
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A Semilattice for Liveness

● Sets of live variables and the set union 
operation.

● Idempotent:
● x ∪ x = x

● Commutative:
● x ∪ y = y ∪ x

● Associative:
● (x ∪ y) ∪ z = x ∪ (y ∪ z)

● Top element:
● The empty set: Ø ∪ x = x
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Semilattices and Program Analysis

● Semilattices naturally solve many of the problems 
we encounter in global analysis.

● How do we combine information from multiple 
basic blocks?
● Use the meet of all of those blocks.

● What value do we give to basic blocks we haven't 
seen yet?
● Use the top element.

● How do we know that the algorithm always 
terminates?
● Actually, we still don't!  More on that later.

Alex Aiken, Stanford



  

A General Framework

● A global analysis is a tuple (D, V, ∧, F, I), where
● D is a direction (forward or backward)

– The order to visit statements within a basic block, not the 
order in which to visit the basic blocks.

● V is a set of values.
● ∧ is a meet operator over those values.
● F is a set of transfer functions f : V → V
● I is an initial value.

● The only difference from local analysis is the 
introduction of the meet operator.
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Running Global Analyses

● Assume that (D, V, ∧, F, I) is a forward analysis.
● Set OUT[s] = ⊤ for all statements s.
● Set OUT[begin] = I.
● Repeat until no values change:

● For each statement s with predecessors
p1, p2, … , pn:

– Set IN[s] = OUT[p1] ∧ OUT[p2] ∧ … ∧ OUT[pn]

– Set OUT[s] = fs (IN[s])

● The order of this iteration does not matter.
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For Comparison

● Set IN[s] = ⊤ for all 
statement s.

● Set IN[exit] = I.
● Repeat until no 

changes occur:
● For each statement s: 

– Set OUT[s] = 
IN[x1]∧…∧IN[xn] 
where x1, …, xn are 
successors of s.

– Set IN[s] = fs (OUT[s])

● Set IN[s] = { } for each 
statement s.

● Set IN[exit] to the set 
of variables known to 
be live on exit.

● Repeat until no 
changes occur:
● For each statement s of 

the form a = b + c:
– Set OUT[s] to set union of 

IN[x] for each successor x 
of s.

– Set IN[s] to 
(OUT[s] – a) ∪ {b, c}.
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The Dataflow Framework

● This form of analysis is called the 
dataflow framework.

● Can be used to easily prove an analysis is 
sound.

● With certain restrictions, can be used to 
prove that an analysis eventually 
terminates.
● Again, more on that later.
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Global Constant Propagation

● Constant propagation is an 
optimization that replaces each variable 
that is known to be a constant value with 
that constant.

● An elegant example of the dataflow 
framework.
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Global Constant Propagation
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end
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w = x;

z = x;

x = 4;
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Constant Propagation Analysis

● In order to do a constant propagation, we need to 
track what values might be assigned to a variable 
at each program point.

● Every variable will either
● Never have a value assigned to it,
● Have a single constant value assigned to it,
● Have two or more constant values assigned to it, or
● Have a known non-constant value.

● Our analysis will propagate this information 
throughout a CFG to identify locations where a 
value is constant.
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Properties of Constant Propagation

● For now, consider just some single variable x.
● At each point in the program, we know one of three 

things about the value of x:
● x is definitely not a constant, since it's been assigned two 

values or assigned a value that we know isn't a constant.
● x is definitely a constant and has value k.
● We have never seen a value for x.

● Note that the first and last of these are not the same!
● The first one means that there may be a way for x to have 

multiple values.
● The last one means that x never had a value at all.
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Defining a Meet Operator

● The meet of any two different constants is Not a 
Constant.

● (If the variable might have two different values on 
entry to a statement, it cannot be a constant.)

● The meet of Not a Constant and any other value is 
Not a Constant.

● (If on some path the value is known not to be a 
constant, then on entry to a statement its value can't 
possibly be a constant.)

● The meet of Undefined and any other value is that 
other value.

● (If x has no value on some path and does have a value 
on some other path, we can just pretend it always had 
the assigned value.)
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A Semilattice for Constant Propagation

0-1 +1-2 +2... ...

Undefined

● One possible semilattice for this analysis is 
shown here:

 

 

 

  
● Note:

● The meet of any two different constants is Not a 
Constant.

● The meet of Undefined and any value is that value.
● The meet of Not a Constant and any value is Not a 

Constant.

Not a Constant
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● The meet of any two different constants is Not a 
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This lattice is infinitely wide!
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Dataflow for Constant Propagation

● Direction: Forward
● Semilattice: Defined earlier
● Transfer functions:

● fx = k (V) = k (assign a constant)

● fx=a+b (V) = Not a Constant (assign non-constant)

● fy = a + b (V) = V (unrelated assignment)

● Initial value: x is Undefined
● (When might we use some other value?)
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