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Available Expressions

e Direction: Forward

« Domain: Sets of expressions assigned to
variables.

 Transfer functions: Given a set of
variable assignments V and statement
a=b+c:

 Remove from V any expression containing a
as a subexpression.

 Add to V the expressiona = b + c.
» Initial value: Empty set of expressions.
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Liveness Analysis
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Liveness Analysis

 Direction: Backwards
« Domain: Sets of variables.

 Transfer function: Given a set of variables V
and statementa = b + c:

« Remove a from V (any previous value of a is now
dead.)

 Add b and c to V (any previous value of b or c is
now live.)

e Formally:f _, . (V) =(V-{a}) U {b, c}

« Initial value: Depends on semantics of
Alox J&%&Pag €.



Running Local Analyses

* Given an analysis (D, V, F, I) for a basic
block.

« Assume that D is “forward;” analogous for the
reverse case.

o Initially, set OUT[entry] to I.

« For each statement s, in order:

« Set IN[s] to OUT[prev], where prev is the
previous statement.

- Set OUTI[s] to f (IN[s]), where f_is the transfer
function for statement s.
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Global Analysis

» A global analysis is an analysis that

works on a control-flow graph as a
whole.

« Substantially more powertful than a local
analysis.

* (Why?)

 Substantially more complicated than a
local analysis.
* (Why?)
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Local vs. Global Analysis

 Many of the optimizations from local analysis can
still be applied globally.

 We'll see how to do this later today.

« Certain optimizations are possible in global
analysis that aren't possible locally:

* e.g. code motion: Moving code from one basic block
into another to avoid computing values unnecessarily.

« We'll explore three analyses in detail:

* Global dead code elimination.
* Global constant propagation.
« Partial redundancy elimination.

Alex Aiken, Stanford



Global Dead Code Elimination

e [.ocal dead code elimination needed to
know what variables were live on exit
from a basic block.

e This information can only be computed
as part of a global analysis.

« How do we modify our liveness analysis
to handle a CFG?
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Major Changes, Part One

* In a local analysis, each statement has
exactly one predecessor.

* In a global analysis, each statement may
have multiple predecessors.

* A global analysis must have some means
of combining information from all
predecessors of a basic block.
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Major Changes, Part II

* In a local analysis, there is only one possible
path through a basic block.

* In a global analysis, there may be many
paths through a CFG.

« May need to recompute values multiple times
as more information becomes available.

 Need to be careful when doing this not to
loop infinitely!

 (More on that later)
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CFEFGs with Loops

« Up to this point, we've considered loop-free CFGs,
which have only finitely many possible paths.

« When we add loops into the picture, this is no longer
true.

« Not all possible loops in a CFG can be realized in the
actual program.
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CFEFGs with Loops

« Up to this point, we've considered loop-free CFGs,
which have only finitely many possible paths.

« When we add loops into the picture, this is no longer
true.

« Not all possible loops in a CFG can be realized in the
actual program.

 Sound approximation: Assume that every possible
path through the CFG corresponds to a valid execution.

* Includes all realizable paths, but some additional paths as
well.

« May make our analysis less precise (but still sound).
 Makes the analysis feasible; we'll see how later.
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Major Changes, Part III

* In a local analysis, there is always a well-
defined “first” statement to begin
processing.

* In a global analysis with loops, every
basic block might depend on every other
basic block.

» To fix this, we need to assign initial
values to all of the blocks in the CFG.
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Summary of Differences

 Need to be able to handle multiple

predecessors/successors for a basic bl

 Need to be able to handle multiple pa

ock.
'hs

through the control-flow graph, and may
need to iterate multiple times to compute
the final value (but the analysis still needs

to terminate!)

 Need to be able to assign each basic block

a reasonable default value for before
we've analyzed it.
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Global Liveness Analysis

 Initially, set IN[s] = { } for each statement s.

« Set IN[exit] to the set of variables known to be live
on exit (language-specific knowledge).

« Repeat until no changes occur:

« For each statement s of the form a = b + ¢, in any order
you'd like:

- Set OUT][s] to set union of IN[p] for each successor p of s.
- Set IN[s] to (OUT[s] - a) U {b, c}.

* Yet another fixed-point iteration!
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Why Does This Work?

« To show correctness, we need to show that

» the algorithm eventually terminates, and
e when it terminates, it has a sound answer.

 Termination argument:

* Once a variable is discovered to be live during some point of the
analysis, it always stays live.

* Only finitely many variables and finitely many places where a
variable can become live.

 Soundness argument (sketch):

 Each individual rule, applied to some set, correctly updates
liveness in that set.

« When computing the union of the set of live variables, a variable is
only live if it was live on some path leaving the statement.
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Theory to the Rescue

e Building up all of the machinery to design this
analysis was tricky.

 The key ideas, however, are mostly independent
of the analysis:

 We need to be able to compute functions describing
the behavior of each statement.

 We need to be able to merge several
subcomputations together.

e We need an initial value for all of the basic blocks.

 There is a beautiful formalism that captures
many of these properties.
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Meet Semilattices

A meet semilattice is a ordering defined on a
set of elements.

 Any two elements have some meet that is the
largest element smaller than both elements.

 There is a unique top element, which is larger
than all other elements.

 Intuitively:

 The meet of two elements represents combining
information from two elements.

 The top element element represents “no information
yet” or “the least conservative possible answer.”
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Meet Semilattices for Liveness
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Meet Semilattices for Liveness

{1}

{ al} { b} { c}

{ a, b} { a, ¢} { b, ¢}

{ a, b, ¢}
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Meet Semilattices for Liveness
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Formal Definitions

A meet semilattice is a pair (D, A), where

e D is a domain of elements.
* A IS a meet operator that is

- idempotent: x A x =X
- commutative: x Ay =y A X
- associative: (X Ay)Az=X A (VA 2)
 If X A y =z, we say that z is the meet or
(greatest lower bound) of x and .

 Every meet semilattice has a top element
denoted T such that T A x = x for all x.
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An Example Semilattice

e The set of natural numbers and the max
function.

« Jdempotent
« max{a, a} = a
« Commutative
« max{a, b} = max{b, a}
» Associative
« max{a, max{b, c}} = max{max{a, b}, c}
« Top element is O:

« max{0, a} = a

Alex Aiken, Stanford



A Semilattice for Liveness

e Sets of live variables and the set union
operation.

 [dempotent:
e XUX=X
« Commutative:
e XUYy=yUZX
e Associative:
e xXUY)UzZz=XxU (YU 2)
« Top element:
« The empty set: J Ux =x
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Semilattices and Program Analysis

« Semilattices naturally solve many of the problems
we encounter in global analysis.

« How do we combine information from multiple
basic blocks?

« Use the meet of all of those blocks.

« What value do we give to basic blocks we haven't
seen yet?

« Use the top element.

« How do we know that the algorithm always
terminates?

« Actually, we still don't! More on that later.
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A General Framework

* A global analysis is a tuple (D, V, A, F, I), where

D is a direction (forward or backward)

- The order to visit statements within a basic block, not the
order in which to visit the basic blocks.

V is a set of values.

A is a meet operator over those values.

F is a set of transfer functions f: V-V
* I is an initial value.

 The only difference from local analysis is the
introduction of the meet operator.
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Running Global Analyses

Assume that (D, V, A, F, I) is a forward analysis.
Set OUT[s] = T for all statements s.
Set OUT[begin] = 1.

Repeat until no values change:

« For each statement s with predecessors
P, P, ....P.:
- Set IN[s] = OUT[p,] A OUT[p,] A ... A OUT[p,]
- Set OUT[s] = f_(IN[s])

e The order of this iteration does not matter.
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For Comparison

e Set IN[s] = T for all - SetIN[s]={ } for each

statement s. statement s.
. « Set IN[exit] to the set
* Set IN[exit] = L. of variables known to

« Repeat until no be live on exit.

changes occur: * Repeat until no
changes occur:

For each statement s: « For each statement s of

- Set OUTIs] = the forma =b + c:
IN[XJ/\"-AIN[XH] - Set OUT(s] to set union of
where X, ..., X _are IN[x] for each successor x

! of s.

successors of s.
Alex Aiken, Stanf - Set IN[S] to
="8et IN[s] = f, (OUT[s]) (OUTIs] - a) U {b, c}.



The Dataflow Framework

» This form of analysis is called the
dataflow framework.

 Can be used to easily prove an analysis is
sound.

« With certain restrictions, can be used to
prove that an analysis eventually
terminates.

« Again, more on that later.
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Global Constant Propagation

 Constant propagation is an
optimization that replaces each variable
that is known to be a constant value with
that constant.

 An elegant example of the dataflow
framework.
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Constant Propagation Analysis

* In order to do a constant propagation, we need to
track what values might be assigned to a variable
at each program point.

« Every variable will either

 Never have a value assigned to it,

 Have a single constant value assigned to it,

« Have two or more constant values assigned to it, or
« Have a known non-constant value.

« Our analysis will propagate this information
throughout a CFG to identify locations where a
value is constant.
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Properties of Constant Propagation

« For now, consider just some single variable x.

« At each point in the program, we know one of three
things about the value of x:

« x is definitely not a constant, since it's been assigned two
values or assigned a value that we know isn't a constant.

« x is definitely a constant and has value k.
« We have never seen a value for x.

e Note that the first and last of these are not the same!

« The first one means that there may be a way for x to have
multiple values.

« The last one means that x never had a value at all.
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Defining a Meet Operator

 The meet of any two different constants is Not a
Constant.

o (If the variable might have two different values on
entry to a statement, it cannot be a constant.)

« The meet of Not a Constant and any other value is
Not a Constant.

e (If on some path the value is known not to be a
constant, then on entry to a statement its value can't
possibly be a constant.)

 The meet of Undefined and any other value is that
other value.

 (If x has no value on some path and does have a value

e e O, SOMe other path, we can just pretend it always had

the assigned value.)



A Semilattice for Constant Propagation

* One possible semilattice for this analysis is
shown here:

Undefined

- - Not a Constant

Alex Aiken, Stanford



A Semilattice for Constant Propagation

* One possible semilattice for this analysis is
shown here:

Undefined

- - Not a Constant

This lattice is infinitely wide:
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A Semilattice for Constant Propagation

* One possible semilattice for this analysis is
shown here:

Undefined

Not a Constant
 Note:

« The meet of any two different constants is Not a
Constant.

 The meet of Undefined and any value is that value.

nex silen i@ meet of Not a Constant and any value is Not a
Constant.
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Global Constant Propagation
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Global Constant Propagation
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Dataftlow for Constant Propagation

e Direction: Forward
e Semilattice: Defined earlier
e Transfer functions:

L, (V) =k (assign a constant)

(V) = Not a Constant (assign non-constant)

a+b

y 14} (V) = (unrelated assignment)

e Initial value: x is Undefined

* (When might we use some other value?)
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