

Global Optimization

Alex Aiken, Stanford

Available Expressions

{ }
a = b;

c = b;

d = a + b;

e = a + b;

d = b;

f = a + b;

Alex Aiken, Stanford

Available Expressions

{ }
a = b;

{ a = b }
c = b;

d = a + b;

e = a + b;

d = b;

f = a + b;

Alex Aiken, Stanford

Available Expressions

{ }
a = b;

{ a = b }
c = b;

{ a = b, c = b }
d = a + b;

e = a + b;

d = b;

f = a + b;

Alex Aiken, Stanford

Available Expressions

{ }
a = b;

{ a = b }
c = b;

{ a = b, c = b }
d = a + b;

{ a = b, c = b, d = a + b }
e = a + b;

d = b;

f = a + b;

Alex Aiken, Stanford

Available Expressions

{ }
a = b;

{ a = b }
c = b;

{ a = b, c = b }
d = a + b;

{ a = b, c = b, d = a + b }
e = a + b;

{ a = b, c = b, d = a + b, e = a + b }
d = b;

f = a + b;

Alex Aiken, Stanford

Available Expressions

{ }
a = b;

{ a = b }
c = b;

{ a = b, c = b }
d = a + b;

{ a = b, c = b, d = a + b }
e = a + b;

{ a = b, c = b, d = a + b, e = a + b }
d = b;

{ a = b, c = b, d = b, e = a + b }
f = a + b;

Alex Aiken, Stanford

Available Expressions

{ }
a = b;

{ a = b }
c = b;

{ a = b, c = b }
d = a + b;

{ a = b, c = b, d = a + b }
e = a + b;

{ a = b, c = b, d = a + b, e = a + b }
d = b;

{ a = b, c = b, d = b, e = a + b }
f = a + b;

{ a = b, c = b, d = b, e = a + b, f = a + b }

Alex Aiken, Stanford

Another View of Local Analyses

Alex Aiken, Stanford

Another View of Local Analyses

Vin

Alex Aiken, Stanford

Another View of Local Analyses

a = b + c

Vin

Alex Aiken, Stanford

Another View of Local Analyses

a = b + c

Vin

Vout

Alex Aiken, Stanford

Another View of Local Analyses

a = b + c

Vin

Vout

Vout = fa = b+c(Vin)

Alex Aiken, Stanford

Available Expressions

a = b;

c = b;

d = a + b;

e = a + b;

d = b;

f = a + b;

Alex Aiken, Stanford

Available Expressions

{ }
a = b;

c = b;

d = a + b;

e = a + b;

d = b;

f = a + b;

Alex Aiken, Stanford

Available Expressions

{ }
a = b;

{ a = b }
c = b;

d = a + b;

e = a + b;

d = b;

f = a + b;

Alex Aiken, Stanford

Available Expressions

{ }
a = b;

{ a = b }
c = b;

{ a = b, c = b }
d = a + b;

e = a + b;

d = b;

f = a + b;

Alex Aiken, Stanford

Available Expressions

{ }
a = b;

{ a = b }
c = b;

{ a = b, c = b }
d = a + b;

{ a = b, c = b, d = a + b }
e = a + b;

d = b;

f = a + b;

Alex Aiken, Stanford

Available Expressions

{ }
a = b;

{ a = b }
c = b;

{ a = b, c = b }
d = a + b;

{ a = b, c = b, d = a + b }
e = a + b;

{ a = b, c = b, d = a + b, e = a + b }
d = b;

f = a + b;

Alex Aiken, Stanford

Available Expressions

{ }
a = b;

{ a = b }
c = b;

{ a = b, c = b }
d = a + b;

{ a = b, c = b, d = a + b }
e = a + b;

{ a = b, c = b, d = a + b, e = a + b }
d = b;

{ a = b, c = b, d = b, e = a + b }
f = a + b;

Alex Aiken, Stanford

Available Expressions

{ }
a = b;

{ a = b }
c = b;

{ a = b, c = b }
d = a + b;

{ a = b, c = b, d = a + b }
e = a + b;

{ a = b, c = b, d = a + b, e = a + b }
d = b;

{ a = b, c = b, d = b, e = a + b }
f = a + b;

{ a = b, c = b, d = b, e = a + b, f = a + b }

Alex Aiken, Stanford

Available Expressions

● Direction: Forward
● Domain: Sets of expressions assigned to

variables.
● Transfer functions: Given a set of

variable assignments V and statement
a = b + c:
● Remove from V any expression containing a

as a subexpression.
● Add to V the expression a = b + c.

● Initial value: Empty set of expressions.
Alex Aiken, Stanford

Liveness Analysis

a = b;

c = a;

d = a + b;

e = d;

d = a;

f = e;

Alex Aiken, Stanford

Liveness Analysis

a = b;

c = a;

d = a + b;

e = d;

d = a;

f = e;
{ b, d }

Alex Aiken, Stanford

Liveness Analysis

a = b;

c = a;

d = a + b;

e = d;

d = a;
{ b, d, e }

f = e;
{ b, d }

Alex Aiken, Stanford

Liveness Analysis

a = b;

c = a;

d = a + b;

e = d;
{ a, b, e }

d = a;
{ b, d, e }

f = e;
{ b, d }

Alex Aiken, Stanford

Liveness Analysis

a = b;

c = a;

d = a + b;
{ a, b, d }

e = d;
{ a, b, e }

d = a;
{ b, d, e }

f = e;
{ b, d }

Alex Aiken, Stanford

Liveness Analysis

a = b;

c = a;
{ a, b }
d = a + b;
{ a, b, d }

e = d;
{ a, b, e }

d = a;
{ b, d, e }

f = e;
{ b, d }

Alex Aiken, Stanford

Liveness Analysis

a = b;
{ a, b }
c = a;
{ a, b }
d = a + b;
{ a, b, d }

e = d;
{ a, b, e }

d = a;
{ b, d, e }

f = e;
{ b, d }

Alex Aiken, Stanford

Liveness Analysis

{ b }
a = b;
{ a, b }
c = a;
{ a, b }
d = a + b;
{ a, b, d }

e = d;
{ a, b, e }

d = a;
{ b, d, e }

f = e;
{ b, d }

Alex Aiken, Stanford

Liveness Analysis

● Direction: Backwards
● Domain: Sets of variables.
● Transfer function: Given a set of variables V

and statement a = b + c:
● Remove a from V (any previous value of a is now

dead.)
● Add b and c to V (any previous value of b or c is

now live.)

● Formally: fa = b + c (V) = (V – {a}) ∪ {b, c}

● Initial value: Depends on semantics of
language.

Alex Aiken, Stanford

Running Local Analyses

● Given an analysis (D, V, F, I) for a basic
block.
● Assume that D is “forward;” analogous for the

reverse case.

● Initially, set OUT[entry] to I.
● For each statement s, in order:

● Set IN[s] to OUT[prev], where prev is the
previous statement.

● Set OUT[s] to fs(IN[s]), where fs is the transfer
function for statement s.

Alex Aiken, Stanford

Global Optimizations

Alex Aiken, Stanford

Global Analysis

● A global analysis is an analysis that
works on a control-flow graph as a
whole.

● Substantially more powerful than a local
analysis.
● (Why?)

● Substantially more complicated than a
local analysis.
● (Why?)

Alex Aiken, Stanford

Local vs. Global Analysis

● Many of the optimizations from local analysis can
still be applied globally.
● We'll see how to do this later today.

● Certain optimizations are possible in global
analysis that aren't possible locally:
● e.g. code motion: Moving code from one basic block

into another to avoid computing values unnecessarily.

● We'll explore three analyses in detail:
● Global dead code elimination.
● Global constant propagation.
● Partial redundancy elimination.

Alex Aiken, Stanford

Global Dead Code Elimination

● Local dead code elimination needed to
know what variables were live on exit
from a basic block.

● This information can only be computed
as part of a global analysis.

● How do we modify our liveness analysis
to handle a CFG?

Alex Aiken, Stanford

CFGs Without Loops

Entry

{x, y}
Exit

{b, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}

Alex Aiken, Stanford

CFGs Without Loops

Entry

{x, y}
Exit

{b, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}

Alex Aiken, Stanford

CFGs Without Loops

Entry

{x, y}
Exit

{b, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}

Alex Aiken, Stanford

CFGs Without Loops

Entry

{x, y}
Exit

{b, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}

Alex Aiken, Stanford

CFGs Without Loops

Entry

{x, y}
Exit

{b, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}

Alex Aiken, Stanford

CFGs Without Loops

Entry

{x, y}
Exit

{b, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}

Alex Aiken, Stanford

CFGs Without Loops

Entry

{x, y}
Exit

{b, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}

Alex Aiken, Stanford

CFGs Without Loops

Entry

{x, y}
Exit

{b, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}

Alex Aiken, Stanford

CFGs Without Loops

Entry

{x, y}
Exit

{b, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}

Alex Aiken, Stanford

CFGs Without Loops

Entry

{x, y}
Exit

{a, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}

Alex Aiken, Stanford

CFGs Without Loops

Entry

{x, y}
Exit

{a, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}

Alex Aiken, Stanford

CFGs Without Loops

Entry

{x, y}
Exit

{a, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}

a = b + c
{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}

Alex Aiken, Stanford

CFGs Without Loops

Entry

{x, y}
Exit

{a, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}

a = b + c
{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}

Alex Aiken, Stanford

CFGs Without Loops

Entry

{x, y}
Exit

{a, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}

a = b + c
{a, b, c, d}

{a, b, c, d}

{a, b, c, d}

Alex Aiken, Stanford

CFGs Without Loops

Entry

{x, y}
Exit

{a, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}

a = b + c
{a, b, c, d}

{a, b, c, d}

{a, b, c, d}

Alex Aiken, Stanford

CFGs Without Loops

Entry

{x, y}
Exit

{a, c, d}
b = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}

a = b + c
{a, b, c, d}

{a, b, c, d}

{a, b, c, d}

Alex Aiken, Stanford

CFGs Without Loops

Entry

Exit

b = c + d

x = a + b
y = c + d

a = b + c

Alex Aiken, Stanford

CFGs Without Loops

Entry

Exit

b = c + d

x = a + b
y = c + d

a = b + c

Alex Aiken, Stanford

Major Changes, Part One

● In a local analysis, each statement has
exactly one predecessor.

● In a global analysis, each statement may
have multiple predecessors.

● A global analysis must have some means
of combining information from all
predecessors of a basic block.

Alex Aiken, Stanford

CFGs Without Loops

Entry

{x, y}
Exit

{b, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}

Alex Aiken, Stanford

CFGs Without Loops

Entry

{x, y}
Exit

{b, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}

Alex Aiken, Stanford

CFGs Without Loops

Entry

{x, y}
Exit

{b, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}

Alex Aiken, Stanford

CFGs Without Loops

Entry

{x, y}
Exit

{b, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}

Alex Aiken, Stanford

CFGs Without Loops

Entry

{x, y}
Exit

{b, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}

Alex Aiken, Stanford

CFGs Without Loops

Entry

{x, y}
Exit

{b, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}

Alex Aiken, Stanford

CFGs Without Loops

Entry

{x, y}
Exit

{b, c, d}
b = c + d
e = c + d
{b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}

Alex Aiken, Stanford

CFGs Without Loops

Entry

{x, y}
Exit

{c, d}
b = c + d
e = c + d
{b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}

Alex Aiken, Stanford

CFGs Without Loops

Entry

{x, y}
Exit

{c, d}
b = c + d
e = c + d
{b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}

Alex Aiken, Stanford

CFGs Without Loops

Entry

{x, y}
Exit

{c, d}
b = c + d
e = c + d
{b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}

Alex Aiken, Stanford

CFGs Without Loops

Entry

{x, y}
Exit

{c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}

Alex Aiken, Stanford

CFGs Without Loops

Entry

{x, y}
Exit

{a, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}

Alex Aiken, Stanford

Major Changes, Part II

● In a local analysis, there is only one possible
path through a basic block.

● In a global analysis, there may be many
paths through a CFG.

● May need to recompute values multiple times
as more information becomes available.

● Need to be careful when doing this not to
loop infinitely!
● (More on that later)

Alex Aiken, Stanford

CFGs with Loops

● Up to this point, we've considered loop-free CFGs,
which have only finitely many possible paths.

● When we add loops into the picture, this is no longer
true.

● Not all possible loops in a CFG can be realized in the
actual program.

Sound approximation: Assume that every possible
path through the CFG corresponds to a valid execution.

Includes all realizable paths, but some additional paths as
well.

May make our analysis less precise (but still sound).

Makes the analysis feasible; we'll see how later.
Alex Aiken, Stanford

CFGs with Loops

● Up to this point, we've considered loop-free CFGs,
which have only finitely many possible paths.

● When we add loops into the picture, this is no longer
true.

● Not all possible loops in a CFG can be realized in the
actual program.

Sound approximation: Assume that every possible
path through the CFG corresponds to a valid execution.

Includes all realizable paths, but some additional paths as
well.

May make our analysis less precise (but still sound).

Makes the analysis feasible; we'll see how later.

Top

x = 1

IfZ x Goto Top;

x = 0

Alex Aiken, Stanford

CFGs with Loops

● Up to this point, we've considered loop-free CFGs,
which have only finitely many possible paths.

● When we add loops into the picture, this is no longer
true.

● Not all possible loops in a CFG can be realized in the
actual program.

● Sound approximation: Assume that every possible
path through the CFG corresponds to a valid execution.
● Includes all realizable paths, but some additional paths as

well.
● May make our analysis less precise (but still sound).
● Makes the analysis feasible; we'll see how later.

Alex Aiken, Stanford

CFGs With Loops

Alex Aiken, Stanford

CFGs With Loops

Entry

{a}
Exit

{a, d}
b = c + d
c = c + d
{a, b, c}

{a, b, c}
a = a + b
d = b + c

{a}

{b, c}
a = b + c
d = a + c
{a, b, c}

{a, b}
c = a + b

{a, b}

Alex Aiken, Stanford

CFGs With Loops

Entry

{a}
Exit

{a, d}
b = c + d
c = c + d
{a, b, c}

{a, b, c}
a = a + b
d = b + c

{a}

{b, c}
a = b + c
d = a + c
{a, b, c}

{a, b}
c = a + b

{a, b}

Alex Aiken, Stanford

Major Changes, Part III

● In a local analysis, there is always a well-
defined “first” statement to begin
processing.

● In a global analysis with loops, every
basic block might depend on every other
basic block.

● To fix this, we need to assign initial
values to all of the blocks in the CFG.

Alex Aiken, Stanford

CFGs With Loops

Entry

{a}
Exit

{a, d}
b = c + d
c = c + d
{a, b, c}

{a, b, c}
a = a + b
d = b + c

{a}

{b, c}
a = b + c
d = a + c
{a, b, c}

{a, b}
c = a + b

{a, b}

Alex Aiken, Stanford

CFGs With Loops

Entry

{a}
Exit

{}
b = c + d
c = c + d
{a, b, c}

{}
a = a + b
d = b + c

{a}

{}
a = b + c
d = a + c
{a, b, c}

{}
c = a + b

{a, b}

Alex Aiken, Stanford

CFGs With Loops

Entry

{a}
Exit

{}
b = c + d
c = c + d
{a, b, c}

{}
a = a + b
d = b + c

{}
a = b + c
d = a + c
{a, b, c}

{}
c = a + b

{a, b}

Alex Aiken, Stanford

CFGs With Loops

Entry

{a}
Exit

{}
b = c + d
c = c + d
{a, b, c}

{}
a = a + b
d = b + c

{a}

{}
a = b + c
d = a + c
{a, b, c}

{}
c = a + b

{a, b}

Alex Aiken, Stanford

CFGs With Loops

Entry

{a}
Exit

{}
b = c + d
c = c + d
{a, b, c}

{a, b, c}
a = a + b
d = b + c

{a}

{}
a = b + c
d = a + c
{a, b, c}

{}
c = a + b

{a, b}

Alex Aiken, Stanford

CFGs With Loops

Entry

{a}
Exit

{}
b = c + d
c = c + d
{a, b, c}

{a, b, c}
a = a + b
d = b + c

{a}

{}
a = b + c
d = a + c

{}
c = a + b

{a, b}

Alex Aiken, Stanford

CFGs With Loops

Entry

{a}
Exit

{}
b = c + d
c = c + d
{a, b, c}

{a, b, c}
a = a + b
d = b + c

{a}

{}
a = b + c
d = a + c
{a, b, c}

{}
c = a + b

{a, b}

Alex Aiken, Stanford

CFGs With Loops

Entry

{a}
Exit

{}
b = c + d
c = c + d
{a, b, c}

{a, b, c}
a = a + b
d = b + c

{a}

{b, c}
a = b + c
d = a + c
{a, b, c}

{}
c = a + b

{a, b}

Alex Aiken, Stanford

CFGs With Loops

Entry

{a}
Exit

{}
b = c + d
c = c + d

{a, b, c}
a = a + b
d = b + c

{a}

{b, c}
a = b + c
d = a + c
{a, b, c}

{}
c = a + b

{a, b}

Alex Aiken, Stanford

CFGs With Loops

Entry

{a}
Exit

{}
b = c + d
c = c + d
{b, c}

{a, b, c}
a = a + b
d = b + c

{a}

{b, c}
a = b + c
d = a + c
{a, b, c}

{}
c = a + b

{a, b}

Alex Aiken, Stanford

CFGs With Loops

Entry

{a}
Exit

{c, d}
b = c + d
c = c + d
{b, c}

{a, b, c}
a = a + b
d = b + c

{a}

{b, c}
a = b + c
d = a + c
{a, b, c}

{}
c = a + b

{a, b}

Alex Aiken, Stanford

CFGs With Loops

Entry

{a}
Exit

{c, d}
b = c + d
c = c + d
{b, c}

{a, b, c}
a = a + b
d = b + c

{a}

{b, c}
a = b + c
d = a + c
{a, b, c}

{}
c = a + b

Alex Aiken, Stanford

CFGs With Loops

Entry

{a}
Exit

{c, d}
b = c + d
c = c + d
{b, c}

{a, b, c}
a = a + b
d = b + c

{a}

{b, c}
a = b + c
d = a + c
{a, b, c}

{}
c = a + b

{a, b, c}

Alex Aiken, Stanford

CFGs With Loops

Entry

{a}
Exit

{c, d}
b = c + d
c = c + d
{b, c}

{a, b, c}
a = a + b
d = b + c

{a}

{b, c}
a = b + c
d = a + c
{a, b, c}

{a, b}
c = a + b

{a, b, c}

Alex Aiken, Stanford

CFGs With Loops

Entry

{a}
Exit

{c, d}
b = c + d
c = c + d
{b, c}

{a, b, c}
a = a + b
d = b + c

{a}

{b, c}
a = b + c
d = a + c
{a, b, c}

{a, b}
c = a + b

{a,{a, b, c} b}

Alex Aiken, Stanford

CFGs With Loops

Entry

{a}
Exit

{c, d}
b = c + d
c = c + d
{b, c}

{a, b, c}
a = a + b
d = b + c
{a, c, d}

{b, c}
a = b + c
d = a + c
{a, b, c}

{a, b}
c = a + b

{a,{a, b, c} b}

Alex Aiken, Stanford

CFGs With Loops

Entry

{a}
Exit

{c, d}
b = c + d
c = c + d
{b, c}

{a, b, c}
a = a + b
d = b + c
{a, c, d}

{b, c}
a = b + c
d = a + c
{a, b, c}

{a, b}
c = a + b

{a,{a, b, c} b}

Alex Aiken, Stanford

CFGs With Loops

Entry

{a}
Exit

{c, d}
b = c + d
c = c + d
{b, c}

{a, b, c}
a = a + b
d = b + c
{a, c, d}

{b, c}
a = b + c
d = a + c
{a, b, c}

{a, b}
c = a + b

{a, b, c}

Alex Aiken, Stanford

CFGs With Loops

Entry

{a}
Exit

{c, d}
b = c + d
c = c + d
{b, c}

{a, b, c}
a = a + b
d = b + c
{a, c, d}

{b, c}
a = b + c
d = a + c
{a, b, c}

{a, b}
c = a + b

{a, b, c}

Alex Aiken, Stanford

CFGs With Loops

Entry

{a}
Exit

{c, d}
b = c + d
c = c + d
{a, b, c}

{a, b, c}
a = a + b
d = b + c
{a, c, d}

{b, c}
a = b + c
d = a + c
{a, b, c}

{a, b}
c = a + b

{a, b, c}

Alex Aiken, Stanford

CFGs With Loops

Entry

{a}
Exit

{a, c, d}
b = c + d
c = c + d
{a, b, c}

{a, b, c}
a = a + b
d = b + c
{a, c, d}

{b, c}
a = b + c
d = a + c
{a, b, c}

{a, b}
c = a + b

{a, b, c}

Alex Aiken, Stanford

CFGs With Loops

Entry

{a}
Exit

{a, c, d}
b = c + d
c = c + d
{a, b, c}

{a, b, c}
a = a + b
d = b + c
{a, c, d}

{b, c}
a = b + c
d = a + c
{a, b, c}

{a, b}
c = a + b

{a, b, c}

Alex Aiken, Stanford

Summary of Differences

● Need to be able to handle multiple
predecessors/successors for a basic block.

● Need to be able to handle multiple paths
through the control-flow graph, and may
need to iterate multiple times to compute
the final value (but the analysis still needs
to terminate!)

● Need to be able to assign each basic block
a reasonable default value for before
we've analyzed it.

Alex Aiken, Stanford

Global Liveness Analysis

● Initially, set IN[s] = { } for each statement s.
● Set IN[exit] to the set of variables known to be live

on exit (language-specific knowledge).
● Repeat until no changes occur:

● For each statement s of the form a = b + c, in any order
you'd like:
– Set OUT[s] to set union of IN[p] for each successor p of s.
– Set IN[s] to (OUT[s] – a) ∪ {b, c}.

● Yet another fixed-point iteration!

Alex Aiken, Stanford

Why Does This Work?

● To show correctness, we need to show that
● the algorithm eventually terminates, and
● when it terminates, it has a sound answer.

● Termination argument:
● Once a variable is discovered to be live during some point of the

analysis, it always stays live.
● Only finitely many variables and finitely many places where a

variable can become live.

● Soundness argument (sketch):
● Each individual rule, applied to some set, correctly updates

liveness in that set.
● When computing the union of the set of live variables, a variable is

only live if it was live on some path leaving the statement.

Alex Aiken, Stanford

Theory to the Rescue

● Building up all of the machinery to design this
analysis was tricky.

● The key ideas, however, are mostly independent
of the analysis:
● We need to be able to compute functions describing

the behavior of each statement.
● We need to be able to merge several

subcomputations together.
● We need an initial value for all of the basic blocks.

● There is a beautiful formalism that captures
many of these properties.

Alex Aiken, Stanford

Meet Semilattices

● A meet semilattice is a ordering defined on a
set of elements.

● Any two elements have some meet that is the
largest element smaller than both elements.

● There is a unique top element, which is larger
than all other elements.

● Intuitively:
● The meet of two elements represents combining

information from two elements.
● The top element element represents “no information

yet” or “the least conservative possible answer.”
Alex Aiken, Stanford

Meet Semilattices for Liveness

Alex Aiken, Stanford

Meet Semilattices for Liveness

{ }

{ a } { b } { c }

{ a, b } { a, c } { b, c }

{ a, b, c }

Alex Aiken, Stanford

Meet Semilattices for Liveness

{ }

{ a } { b } { c }

{ a, b } { a, c } { b, c }

{ a, b, c }

Top
Element

Alex Aiken, Stanford

Meet Semilattices for Liveness

{ }

{ a } { b } { c }

{ a, b } { a, c } { b, c }

{ a, b, c }

Alex Aiken, Stanford

Meet Semilattices for Liveness

{ }

{ a } { b } { c }

{ a, b } { a, c } { b, c }

{ a, b, c }

Alex Aiken, Stanford

Meet Semilattices for Liveness

{ }

{ a } { b } { c }

{ a, b } { a, c } { b, c }

{ a, b, c }

Alex Aiken, Stanford

Meet Semilattices for Liveness

{ }

{ a } { b } { c }

{ a, b } { a, c } { b, c }

{ a, b, c }

Alex Aiken, Stanford

Formal Definitions

● A meet semilattice is a pair (D, ∧), where
● D is a domain of elements.
● ∧ is a meet operator that is

– idempotent: x ∧ x = x
– commutative: x ∧ y = y ∧ x
– associative: (x ∧ y) ∧ z = x ∧ (y ∧ z)

● If x ∧ y = z, we say that z is the meet or
(greatest lower bound) of x and y.

● Every meet semilattice has a top element
denoted ⊤ such that ⊤∧ x = x for all x.

Alex Aiken, Stanford

An Example Semilattice

● The set of natural numbers and the max
function.

● Idempotent
● max{a, a} = a

● Commutative
● max{a, b} = max{b, a}

● Associative
● max{a, max{b, c}} = max{max{a, b}, c}

● Top element is 0:
● max{0, a} = a

Alex Aiken, Stanford

A Semilattice for Liveness

● Sets of live variables and the set union
operation.

● Idempotent:
● x ∪ x = x

● Commutative:
● x ∪ y = y ∪ x

● Associative:
● (x ∪ y) ∪ z = x ∪ (y ∪ z)

● Top element:
● The empty set: Ø ∪ x = x

Alex Aiken, Stanford

Semilattices and Program Analysis

● Semilattices naturally solve many of the problems
we encounter in global analysis.

● How do we combine information from multiple
basic blocks?
● Use the meet of all of those blocks.

● What value do we give to basic blocks we haven't
seen yet?
● Use the top element.

● How do we know that the algorithm always
terminates?
● Actually, we still don't! More on that later.

Alex Aiken, Stanford

A General Framework

● A global analysis is a tuple (D, V, ∧, F, I), where
● D is a direction (forward or backward)

– The order to visit statements within a basic block, not the
order in which to visit the basic blocks.

● V is a set of values.
● ∧ is a meet operator over those values.
● F is a set of transfer functions f : V → V
● I is an initial value.

● The only difference from local analysis is the
introduction of the meet operator.

Alex Aiken, Stanford

Running Global Analyses

● Assume that (D, V, ∧, F, I) is a forward analysis.
● Set OUT[s] = ⊤ for all statements s.
● Set OUT[begin] = I.
● Repeat until no values change:

● For each statement s with predecessors
p1, p2, … , pn:

– Set IN[s] = OUT[p1] ∧ OUT[p2] ∧ … ∧ OUT[pn]

– Set OUT[s] = fs (IN[s])

● The order of this iteration does not matter.

Alex Aiken, Stanford

For Comparison

● Set IN[s] = ⊤ for all
statement s.

● Set IN[exit] = I.
● Repeat until no

changes occur:
● For each statement s:

– Set OUT[s] =
IN[x1]∧…∧IN[xn]
where x1, …, xn are
successors of s.

– Set IN[s] = fs (OUT[s])

● Set IN[s] = { } for each
statement s.

● Set IN[exit] to the set
of variables known to
be live on exit.

● Repeat until no
changes occur:
● For each statement s of

the form a = b + c:
– Set OUT[s] to set union of

IN[x] for each successor x
of s.

– Set IN[s] to
(OUT[s] – a) ∪ {b, c}.

Alex Aiken, Stanford

The Dataflow Framework

● This form of analysis is called the
dataflow framework.

● Can be used to easily prove an analysis is
sound.

● With certain restrictions, can be used to
prove that an analysis eventually
terminates.
● Again, more on that later.

Alex Aiken, Stanford

Global Constant Propagation

● Constant propagation is an
optimization that replaces each variable
that is known to be a constant value with
that constant.

● An elegant example of the dataflow
framework.

Alex Aiken, Stanford

Global Constant Propagation
start

end

x = 6;

y = x; z = y;

w = x;

z = x;

x = 4;
Alex Aiken, Stanford

Global Constant Propagation
start

end

x = 6;

y = x; z = y;

w = x;

z = x;

x = 4;
Alex Aiken, Stanford

Global Constant Propagation
start

end

x = 6;

y = 6; z = y;

w = 6;

z = x;

x = 4;
Alex Aiken, Stanford

Constant Propagation Analysis

● In order to do a constant propagation, we need to
track what values might be assigned to a variable
at each program point.

● Every variable will either
● Never have a value assigned to it,
● Have a single constant value assigned to it,
● Have two or more constant values assigned to it, or
● Have a known non-constant value.

● Our analysis will propagate this information
throughout a CFG to identify locations where a
value is constant.

Alex Aiken, Stanford

Properties of Constant Propagation

● For now, consider just some single variable x.
● At each point in the program, we know one of three

things about the value of x:
● x is definitely not a constant, since it's been assigned two

values or assigned a value that we know isn't a constant.
● x is definitely a constant and has value k.
● We have never seen a value for x.

● Note that the first and last of these are not the same!
● The first one means that there may be a way for x to have

multiple values.
● The last one means that x never had a value at all.

Alex Aiken, Stanford

Defining a Meet Operator

● The meet of any two different constants is Not a
Constant.

● (If the variable might have two different values on
entry to a statement, it cannot be a constant.)

● The meet of Not a Constant and any other value is
Not a Constant.

● (If on some path the value is known not to be a
constant, then on entry to a statement its value can't
possibly be a constant.)

● The meet of Undefined and any other value is that
other value.

● (If x has no value on some path and does have a value
on some other path, we can just pretend it always had
the assigned value.)

Alex Aiken, Stanford

A Semilattice for Constant Propagation

0-1 +1-2 +2... ...

Undefined

● One possible semilattice for this analysis is
shown here:

● Note:

● The meet of any two different constants is Not a
Constant.

● The meet of Undefined and any value is that value.
● The meet of Not a Constant and any value is Not a

Constant.

Not a Constant

Alex Aiken, Stanford

A Semilattice for Constant Propagation

0-1 +1-2 +2... ...

Undefined

● One possible semilattice for this analysis is
shown here:

● Note:

● The meet of any two different constants is Not a
Constant.

● The meet of Undefined and any value is that value.
● The meet of Not a Constant and any value is Not a

Constant.

Not a Constant

This lattice is infinitely wide!
Alex Aiken, Stanford

A Semilattice for Constant Propagation

0-1 +1-2 +2... ...

Undefined

● One possible semilattice for this analysis is
shown here:

● Note:

● The meet of any two different constants is Not a
Constant.

● The meet of Undefined and any value is that value.
● The meet of Not a Constant and any value is Not a

Constant.

Not a Constant

Alex Aiken, Stanford

A Semilattice for Constant Propagation

0-1 +1-2 +2... ...

Undefined

● One possible semilattice for this analysis is
shown here:

● Note:

● The meet of any two different constants is Not a
Constant.

● The meet of Undefined and any value is that value.
● The meet of Not a Constant and any value is Not a

Constant.

Not a Constant

Alex Aiken, Stanford

Global Constant Propagation
start

end

x = 6;

y = x; z = y;

w = x;

z = x;

x = 4;
Alex Aiken, Stanford

Global Constant Propagation
start

end

x = 6;
Undefined

y = x;
Undefined

z = y;
Undefined

w = x;
Undefined

z = x;
Undefined

x = 4;
UndefinedAlex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

x = 6;
Undefined

y = x;
Undefined

z = y;
Undefined

w = x;
Undefined

z = x;
Undefined

x = 4;
UndefinedAlex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

x = 6;
Undefined

y = x;
Undefined

z = y;
Undefined

w = x;
Undefined

z = x;
Undefined

x = 4;
UndefinedAlex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

Undefined

y = x;
Undefined

z = y;
Undefined

w = x;
Undefined

z = x;
Undefined

x = 4;
UndefinedAlex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

y = x;
Undefined

z = y;
Undefined

w = x;
Undefined

z = x;
Undefined

x = 4;
UndefinedAlex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

y = x;
Undefined

z = y;
Undefined

w = x;
Undefined

z = x;
Undefined

x = 4;
UndefinedAlex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

Undefined
z = y;

Undefined

w = x;
Undefined

z = x;
Undefined

x = 4;
UndefinedAlex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6
z = y;

Undefined

w = x;
Undefined

z = x;
Undefined

x = 4;
UndefinedAlex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6
z = y;

Undefined

w = x;
Undefined

z = x;
Undefined

x = 4;
UndefinedAlex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6
z = y;

Undefined

w = x;
Undefined

z = x;
Undefined

x = 4;
Undefined

0-1 +1... ...

Undefined

Not a Constant

Alex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6
z = y;

Undefined

6
w = x;

Undefined

z = x;
Undefined

x = 4;
Undefined

0-1 +1... ...

Undefined

Not a Constant

Alex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6
z = y;

Undefined

6
w = x;

Undefined

z = x;
Undefined

x = 4;
UndefinedAlex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6
z = y;

Undefined

6
w = x;

6

z = x;
Undefined

x = 4;
UndefinedAlex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6
z = y;

Undefined

6
w = x;

6

z = x;
Undefined

x = 4;
UndefinedAlex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6
z = y;

Undefined

6
w = x;

6

6
z = x;

Undefined

x = 4;
UndefinedAlex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6
z = y;

Undefined

6
w = x;

6

6
z = x;

6

x = 4;
UndefinedAlex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6
z = y;

Undefined

6
w = x;

6

6
z = x;

6

x = 4;
UndefinedAlex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6
z = y;

Undefined

6
w = x;

6

6
z = x;

6

6
x = 4;

UndefinedAlex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6
z = y;

Undefined

6
w = x;

6

6
z = x;

6

6
x = 4;

4Alex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6
z = y;

Undefined

6
w = x;

6

6
z = x;

6

6
x = 4;

4Alex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

Undefined

6
w = x;

6

6
z = x;

6

6
x = 4;

4Alex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

6
z = x;

6

6
x = 4;

4Alex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

6
z = x;

6

6
x = 4;

4Alex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

6
z = x;

6

6
x = 4;

4Alex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

6
z = x;

6

6
x = 4;

4Alex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

6
z = x;

6

6
x = 4;

4Alex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

6
z = x;

6

6
x = 4;

4Alex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

6
z = x;

6

6
x = 4;

4

0-1 +1... ...

Undefined

Not a Constant

Alex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

Not Const
z = x;

6

6
x = 4;

4

0-1 +1... ...

Undefined

Not a Constant

Alex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

Not Const
z = x;

6

6
x = 4;

4Alex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

Not Const
z = x;

Not Const

6
x = 4;

4Alex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

Not Const
z = x;

Not Const

6
x = 4;

4Alex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

Not Const
z = x;

Not Const

Not Const
x = 4;

4Alex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

Not Const
z = x;

Not Const

Not Const
x = 4;

4Alex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

Not Const
z = x;

Not Const

Not Const
x = 4;

4Alex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

Not Const
z = x;

Not Const

Not Const
x = 4;

4Alex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

Not Const
z = x;

Not Const

Not Const
x = 4;

4Alex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

Not Const
z = x;

Not Const

Not Const
x = 4;

4Alex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

Not Const
z = x;

Not Const

Not Const
x = 4;

4Alex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

Not Const
z = x;

Not Const

Not Const
x = 4;

4Alex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

Not Const
z = x;

Not Const

Not Const
x = 4;

4Alex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

Not Const
z = x;

Not Const

Not Const
x = 4;

4Alex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

Not Const
z = x;

Not Const

Not Const
x = 4;

4Alex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = 6;

6

6
z = y;

6

6
w = x;

6

Not Const
z = x;

Not Const

Not Const
x = 4;

4Alex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = 6;

6

6
z = y;

6

6
w = x;

6

Not Const
z = x;

Not Const

Not Const
x = 4;

4Alex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = 6;

6

6
z = y;

6

6
w = 6;

6

Not Const
z = x;

Not Const

Not Const
x = 4;

4Alex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = 6;

6

6
z = y;

6

6
w = 6;

6

Not Const
z = x;

Not Const

Not Const
x = 4;

4Alex Aiken, Stanford

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = 6;

6

6
z = y;

6

6
w = 6;

6

Not Const
z = x;

Not Const

Not Const
x = 4;

4Alex Aiken, Stanford

Global Constant Propagation
start

end

x = 6;

y = 6; z = y;

w = 6;

z = x;

x = 4;
Alex Aiken, Stanford

Dataflow for Constant Propagation

● Direction: Forward
● Semilattice: Defined earlier
● Transfer functions:

● fx = k (V) = k (assign a constant)

● fx=a+b (V) = Not a Constant (assign non-constant)

● fy = a + b (V) = V (unrelated assignment)

● Initial value: x is Undefined
● (When might we use some other value?)

Alex Aiken, Stanford

