
Journal of Intelligent and Robotic Systems 33: 371–408, 2002.
© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

371

Detection, Tracking and Avoidance of Multiple
Dynamic Objects

K. MADHAVA KRISHNA and PREM K. KALRA
Department of Electrical Engineering, Indian Institute of Technology at Kanpur, India
E-mail: {kkrishna;kalra}@iitk.ac.in

(Received: 13 November 2000; in final form: 10 July 2001)

Abstract. Real-time motion planning in an unknown environment involves collision avoidance of
static as well as moving agents. Strategies suitable for navigation in a stationary environment cannot
be translated as strategies per se for dynamic environments. In a purely stationary environment all
that the sensor can detect can only be a static object is assumed implicitly. In a mixed environment
such an assumption is no longer valid. For efficient collision avoidance identification of the attribute
of the detected object as static or dynamic is probably inevitable. Presented here are two novel
schemes for perceiving the presence of dynamic objects in the robot’s neighborhood. One of them,
called the Model-Based Approach (MBA) detects motion by observing changes in the features of the
environment represented on a map. The other CBA (cluster-based approach) partitions the contents
of the environment into clusters representative of the objects. Inspecting the characteristics of the par-
titioned clusters reveals the presence of dynamic agents. The extracted dynamic objects are tracked
in consequent samples of the environment through a straightforward nearest neighbor rule based
on the Euclidean metric. A distributed fuzzy controller avoids the tracked dynamic objects through
direction and velocity control of the mobile robot. The collision avoidance scheme is extended to
overcome multiple dynamic objects through a priority based averaging technique (PBA). Indicating
the need for additional rules apart from the PBA to overcome conflicting decisions while tackling
multiple dynamic objects can be considered as another contribution of this effort. The method has
been tested through simulations by navigating a sensor-based mobile robot amidst multiple dynamic
objects and its efficacy established.

Key words: sensor-based mobile robot, dynamic objects, real-time detection and tracking, clustering-
based approach, model-based approach, collision avoidance, fuzzy rule-base.

1. Introduction

Proposed in this paper a methodology for detecting, tracking and avoiding many
dynamic objects in the neighborhood of a navigating robot. A priori information
regarding the objects’ position and velocity are not available to the algorithm. It
was felt that an initial classification of the neighborhood in terms of static and
dynamic agents would simplify the strategy for collision avoidance that follows
classification. As a consequence only the dynamic objects need to be tracked and
their future positions predicted while the static objects need not be subjected to
such treatment.



372 K. MADHAVA KRISHNA AND P. K. KALRA

The classification of the environment into static and dynamic objects is accom-
plished through two approaches, both of which involve representing the contents
of the environment on a map. The first approach (MBA) detects a dynamic object
when significant changes in its features as represented on a map are observed over a
time window. The other approach (CBA) partitions the contents of the environment
into clusters where the partitioned clusters indicate the number of objects present in
the neighborhood. The properties of the cluster determine the nature of the object
as static or dynamic. The CBA is a self-organizing clustering algorithm capable
of ascertaining the number of clusters present in a given data set. The detected
dynamic objects are tracked in the subsequent scans of the environment through a
straightforward nearest neighbor strategy.

A fuzzy rule-base scheme does the collision avoidance of the tracked objects
through velocity and direction control. The control strategy can be considered dis-
tributive in the sense each object tracked is evaded by a separate fuzzy controller.
This is different from the centralized controller used in stationary environments
[12, 14] where the avoidance law is not applied with respect to each object but to
the entire environment as a whole. It is to be noted that only the dynamic objects
are tackled by the strategy discussed in this paper while the static objects are cir-
cumvented through an earlier approach of ours [14]. The fuzzy rule-base scheme
is developed initially for a single dynamic object. When multiple dynamic objects
are detected the avoidance strategy takes recourse to one of the following three
alternatives:

(i) The collision avoidance strategy for a single dynamic object is extended to
the case of multiple objects through a priority based averaging scheme (PBA),
where each of the dynamic object is assigned a priority.

(ii) The top two objects with maximum priority are considered and collision
avoidance strategy is applied to the two objects with the aid of additional
heuristic rules as the actions generated by the fuzzy rules for the individual
objects gives rise to conflicts.

(iii) The objects are avoided by letting the robot turn along the direction where
maximum freespace between two adjacent objects is detected.

The three alternatives correspond to different possibilities in the configuration of
dynamic objects that would be elaborated in Section 3 of the paper.

The main contribution of this effort we feel are the two strategies for detecting
dynamic agents amidst static objects. Though literature abounds in work related
with navigation in dynamic environments, not much exploration has been along
the directions of an explicit classification of the detected objects as static or dy-
namic. Some of the earliest methods that incorporated dynamic object avoidance
can be found in the works of Fujimura [6] and Shih [20]. Both these methods
involved modeling the stationary and dynamic objects in a four-dimensional space–
time graph. A typical graph search reveals the collision free path. Other methods
computed the robot’s path in a static environment using global strategies. As the



DETECTION, TRACKING AND AVOIDANCE OF MULTIPLE DYNAMIC OBJECTS 373

robot traces this path to reach its goal dynamic objects are further introduced that
crisscross its path. Avoidance is achieved by re-planning the original path through
a velocity control in some cases [7] and velocity and direction control in others
[16, 23]. A similar approach that interleaves planning and execution with the robot
following a pre defined path that can be subject to modifications was proposed
by Lamadrid and Gini [11]. Later on some fuzzy rule based approaches [12, 22]
were reported for dynamic object avoidance through a velocity control scheme.
The problem with a purely velocity control scheme is its inability to avoid objects
that approach the robot along a more or less head on direction. Hiraga and others
proposed a neuro fuzzy based strategy [8] that incorporated both direction and
velocity control but the algorithm had been dealt with from the context of avoiding
a single dynamic object only. Recent papers have extended the basic philosophy of
collision avoidance between a robot and dynamic objects to cooperative collision
avoidance among multiple mobile robots that plan and execute a task [6].

However in none of the approaches listed above there is a scheme for detecting
the presence of dynamic objects amidst the static ones. In case of global approaches
such as the space–time graphs of Fujimora and Shih [5, 20] the need for such
detection does not arise for the positions and velocities of all the objects are as-
sumed to be known a priori and dynamic objects are those whose velocities are
nonzero. In approaches where prior information about the objects are not known
such as [8, 12] there still appears to be a tacit prior assumption regarding the static
vis-à-vis dynamic attribute of the detected object. In other words even amongst
algorithms that navigate in the absence of global information such as in sensor-
based navigation, a priori information regarding the attribute of the sensed object
does appear to sneak in. Recently Chang and Song [4, 21] have circumvented
this problem implicitly by predicting the future sensor readings based on past and
present readings. Their algorithm makes estimates of the expected sensor readings
in the subsequent sample based on prior observations. The estimates are made
for both static and dynamic objects and hence there is no explicit classification
regarding the nature of the object with respect to its static or dynamic attribute.

In this way the proposed schemes for explicit detection of dynamic agents ren-
ders novelty to the theme of this paper. The algorithm needs to track and predict
the future positions of only the dynamic objects for further collision avoidance.
This we claim to be more consistent with human intuition as humans are generally
aware whether they are cognizing a static or dynamic object and accordingly plan
their paths. Very recently a method that makes use of what is called the timestamp
map [19] has been proposed for explicit classification of attributes. The timestamp
approach considers only the two most recent samples of the environment for clas-
sification and hence expects noticeable changes within two successive scans and
detects only very fast moving objects. The present approach considers a cumulative
effect over a series of scans and is capable of discerning slow moving objects also.
Apart from this there are also basic differences in the methodologies adopted in the
two approaches.



374 K. MADHAVA KRISHNA AND P. K. KALRA

Another contribution of the present effort as felt by the authors relating to colli-
sion avoidance is its indication that a collision avoidance strategy applicable for a
single dynamic object cannot in general be extended over multiple dynamic objects
when apriori information is unavailable. Many approaches appear to have bypassed
this observation by extending their strategies over multiple objects through the
commonly adopted priority-based averaging (PBA) technique [5, 22]. The PBA
has inherent limitations for a certain configuration of objects where the avoidance
measure adopted for individual objects gives rise to conflicts. This is somewhat
akin to the local minimum problem [13, 18] where the goal orienting and obstacle
repulsing tendencies of the robot cancel each other. To overcome such conflicts the
normal extension through PBA needs to be overridden through a different strategy
or rules. These set of rules come into play only when a conflict is detected.

As far as tracking of moving objects are concerned most of the methods are
devoted to vision-based tracking predominant among them being the optical flow
method [9], its improvements [15, 17] and motion-energy-based methods [3, 14].
The present approach deals with real-time data obtained from range sensors where
detected objects are tracked in the subsequent samples based on the customary
Euclidean metric scheme. This scheme becomes relevant in the absence of a priori
information regarding the parameters of the moving objects and is suitable also
from the point of view of real-time efficiency.

The rest of the paper has been organized as follows. Section 2 deals with the two
schemes that classify an object as stationary or dynamic and the tracking of such
classified dynamic objects. Section 3 discusses the various considerations involved
in avoidance of multiple dynamic objects through a fuzzy rule based approach.
Section 4 portrays the efficacy of the algorithm through simulation while Section 5
presents the conclusions and future scope of this work.

2. Real-Time Motion Perception

The problem of ascertaining the presence of dynamic objects in the robot’s vicinity
becomes all the more obscure when information about the environment is ob-
tained from range sensors. In vision-based detection and tracking systems a single
snapshot can furnish the essential details and a holistic representation of the en-
vironment can be obtained. Data obtained from the range sensors on the other
hand are nothing but discretized spatial samples, which represents those parts of
the local environment that have reflected the beam emitted by these sensors. To
obtain a unified picture of the environment based on a temporal sequence of such
spatially discrete samples becomes inscrutable especially if the environment is
non-stationary and the sensors are themselves subjected to translation and rotation.
Despite these difficulties ultrasonic sensors have been popular and found suitable
for real-time navigation purposes.

It is also to be noted that the problem of motion detection is an involved one
especially if the sensors are prone to motion. This leads to a situation where ap-



DETECTION, TRACKING AND AVOIDANCE OF MULTIPLE DYNAMIC OBJECTS 375

parent changes in the robot’s perception of the environment may not only be due
to the actual motion of the objects but also due to a change in point of view of
the sensor. Distinguishing between actual moving objects and unknown stationary
objects seen from a different viewpoint is not a trivial problem to solve in general.

2.1. MOTION PERCEPTION BY MBA

The MBA builds a map of the robot’s environment, extracts the features of the ob-
jects, tracks the features over the samples and detects motion by detecting changes
in the representation of these features. The various preprocessing modules involved
before an object is deemed fit for classification by the MBA are discussed briefly
below.

2.1.1. Pre-processing Modules in MBA

The preprocessing modules consist of feature extractor (FE) and object tracker
(OT). The visible edges of the objects are extracted and represented through the
coordinates of their endpoints and the center. The procedure adopted for feature
extraction is listed very briefly.

(i) Object demarcation. The FE initially demarcates those objects, which are dis-
tinctly separable, i.e., objects that are demarcated by virtue of one or more sensor
reading that indicate a free-space between two sets of contiguous readings. For
example, in Figure 1 object A is detected by sensors 7–10 and object B by sensors
12–14. The objects are demarcated through sensor 11 whose reading indicates a
free-space.

The FE then looks for occluding objects that are not demarcated due to a free-
space sensor reading between them, such as in Figure 2(a). These objects are
demarcated by observing a sudden jump within a contiguous set of sensor read-
ings (Figure 2(a)), or through a pattern of increasing range readings followed by a
decrease (Figure 2(b)) during a counter-clockwise scan. Further the FE resorts to a
recursive least squares (RLS) fit as a final procedure for separating the visible edges
of occluding objects that do not get demarcated while looking for above changes

Figure 1. Object A detected by sensors 7–10, object B by 12–14 with 11 indicating free space.



376 K. MADHAVA KRISHNA AND P. K. KALRA

(a) (b)
Figure 2. (a) Objects demarcated by a sudden jump between the reading of sensor 11 and 12;
(b) objects demarcated by a pattern of increase–decrease in a counter clockwise scan.

Figure 3. Between two success scans of the environment the object gets occluded partially
that can cause a subsequent shift in the center and can get classified as a new object.

in patterns. The RLS also parameterizes the visible edges in terms of their slopes
and intercepts.

(ii) Object tracking. The parameters of the dynamic object that are to be tracked
are the two endpoints of the extracted edges and the center point. If a single point
represents an object then there is only one parameter to be tracked. In MBA the
range data set of every scan is reduced to its features and the correspondence
between the features representing the same object in successive scans is determined
by the nearest-neighbor criterion. For each visible edge representing an object at
time t , the edge closest to it at t − 1 is determined in terms of the Euclidean metric
norm applied between the edge centers at the two sampling instants. If this distance
to its nearest neighbor is smaller than a neighborhood threshold, nth, we assume
that both the edges represent the same object. The parameters representing the
object at t − 1 are updated by the parameters of the object at t that become the
new parameters of the object. An interesting case that arises while tracking we
feel needs mentioning. Shown in Figure 3 is a case where an object that was fully
visible in the previous instant gets partially occluded due to which the shift in
the center is considerable and can get detected as a new object in the subsequent
instant. In other words the distance between the centers occupied by the object at t
and at t − 1 exceeds nth leading to the classification of the occluded object at t as
a new object. To avoid such a situation the correspondence between the apparent
new object at t is done with the older object at t − 1 by seeing whether their
gradients and intercepts are compatible at both instants. Other issues such as how
the tracking algorithm maintains a list of objects tracked, identifies new objects that



DETECTION, TRACKING AND AVOIDANCE OF MULTIPLE DYNAMIC OBJECTS 377

appear within the vicinity of the robot, discards objects that are no longer visible
are not mentioned here for they are not pertinent to the main theme of discussion.

2.1.2. Object Classifier

The tracked objects are classified in two tracks. One track is relevant for objects
whose extracted edges are parallel to its (object’s) own motion direction and other
with objects whose edges are perpendicular to its direction of motion. For objects
whose edges have a parallel and a perpendicular motion component either of the
scheme is applicable.

Parallel Edge Motion Detection (PEMD). The PEMD scheme detects motion in
an object by looking for the rear (front) end of its visible edge to get past the
location that was earlier occupied by the front (rear) end within a threshold number
of samples, mth. This is portrayed in Figure 4(a) where the rear end of the object
gets past the location occupied by the front end at t0 in 3 samples. For longer objects
the MBA looks for one of the endpoints to get past a certain length of the object
within the required number of samples. The ratio 1/n of length of the edge that
must be crossed over by the endpoint for the object to get classified as dynamic
is obtained through the plot of the relation shown in Figure 4(b). Fixing the value
of n higher than 3 can cause misclassification for it is observed that even in static
objects one of the endpoints gets past a portion of the length of the object over a
temporal window. This is because the sensors detect different parts of the object
at different instances and the two endpoints of the edge appear to vary with every
sample even for a static object.

Denoting the front coordinates of the visible edge as (xf , yf ) and the rear co-
ordinates as (xr , yr) and when the direction of motion is from the rear to the front
the following procedure classifies the attribute of the object:

PROCEDURE MBAPEMD.
If (xf (t) > xr(t)) and (yf (t) > yr(t)) for an object k

If in ε < nth number of samples

(a) (b)
Figure 4. (a) PEMD. The rear edge of the object gets past the location of the front edge at to
after 3 samples at to +3; (b) plot of length of object vs. the ration 1/n.



378 K. MADHAVA KRISHNA AND P. K. KALRA

If xr(t + ε) > xr(t)+ xf (t)− xr(t)
n and yr(t + ε) > yr(t)+ yf (t)− yr(t)

n
then k is a dynamic object
else k is a static object.

Similar reasoning extends for other combinations of the front and rear edge
such as (xf (t) < xr(t)) and so on. Evidently the assumption is that objects move
along linear or piecewise linear trajectories. This assumption appears inevitable
in the absence of apriori information about the motion characteristics of the ob-
jects. Nonetheless the above procedure can still detect objects that move along a
nonlinear path such as a parabola as long as the condition mentioned in the above
procedure gets satisfied.

Perpendicular edge Motion Detection (PDMD). The PDMD scheme detects mo-
tion in an object by considering the rate of decrease in the distances to the object’s
center over a time window. Consider Figure 5 where a static object is tracked in
two successive samples through its center. The robot undergoes a net rotational
displacement of α between the two scans. The angles made by the robot’s heading
direction with respect to the object’s center at the two instants are λ and ψ (see
Figure 5), respectively.

In actual simulations and implementations there would be shifts in the object’s
center as figured out by the MBA between the two instants. The shifts are not
considered in obtaining a relation for the decrease in displacement, for what is
required is a general notion of the decrease to formulate a threshold that can classify
the attribute of the object. The amount of shift in the center between two successive
scans is in general difficult to predict or estimate. Let the distance from the object’s
center, o, to the robot’s center at a be d and the displacement of the robot’s center
between the two samples be c. Then the expected value of the distance from the
object’s center to the robot’s current localization at b is given by

d̂t = −c cosψ ±√
(dt−1 − c sinψ)(dt−1 + c sinψ)

= dt−1 − c cosψ for dt−1 � c. (1)

Figure 5. Static object tracked in two succesive samples by its center marked as o.



DETECTION, TRACKING AND AVOIDANCE OF MULTIPLE DYNAMIC OBJECTS 379

The expected rate of decrease between two samples of the environment can be
written as

ŝi = d̂t − dt−1. (2)

Considering an ensemble of N such samples of the environment and denoting the
observed average rate of decrease as s̄ and the expected average rate of decrease
as ¯̂s the PDMD routine classifies the object as dynamic if the following relation
holds:

s̄ > ¯̂s +�, (3)

where � is a threshold fixed at 1.6 pixels/sample,

s̄ = dt+N−1 − dt

N − 1

and

¯̂s = d̂t+N−1 − dt

N − 1
=

∑N−1
i=1 ci cosψi

N − 1
.

It is to be noted that � is not a problem specific parameter, it can be considered as
some of kind of tolerance given in lieu of the fact that the sensors do not detect the
same locations on an object during successive instants. In other words we may say
to a reasonable certainty that if relation (2) holds the extracted feature corresponds
to a dynamic object. However in cases where ¯̂s < s̄ < ˆ̄s +� the extracted feature
is considered to be dynamic with a certainty p = (s̄ − ˆ̄s)/�. If the same inequality
ˆ̄s < s̄ < ˆ̄s +� holds over successive instants the certainty values are incremented.
The certainty value reaches unity in general within the subsequent three samples.

2.1.3. Post-processing in MBA

The following modules constitute the exception handler that forms the core of the
post processing involved in MBA.

Dynamic object occlusion. This subroutine checks if a dynamic object gets oc-
cluded fully by another dynamic or static object. This is detected when a dynamic
object that was well within the detection range of the sensors at t − 1 was not
tracked at t . The routine then checks if the occluded flag was set for that object
at t − 1. Detecting partially occluded objects and non-separable distinct objects
as described in Section 2.1.1 sets the occluded flag. If the occluded flag was set
at t − 1 the algorithm deciphers that the object has become occluded completely
at t . The algorithm then continues to update the parameters of the occluded object
using a predictor though the sensors do not actually detect it. This is continued till
the predicted values get beyond the detecting range of the sensors or the object
becomes visible again.



380 K. MADHAVA KRISHNA AND P. K. KALRA

Instantaneous object classification. The objective of this routine is to find out
those situations where the algorithm detects a new face of a dynamic object while
the old face is no more tracked. This happens when a cluster at t − 1 that was well
within detection range does not get tracked at t while a new cluster is detected at
less than far range. A new cluster is generally expected to get detected at far ranges.
If this does not happen it can be that the sensors detect a new face of an already
existing object. This is checked if the new cluster is closest to that cluster of t − 1
that has disappeared at t . If this were so it can be concluded that the new cluster is
actually a new face of an already detected object. In such a case the new cluster is
instantaneously classified as dynamic if the old cluster was so classified.

There exist other circumstances where the exception handler is invoked such
as when a cluster of the previous instant gets associated with two clusters in the
subsequent instant that are not discussed here for succinctness. It is admitted that
establishing correspondence between the cluster centers through the nearest neigh-
bor criterion is not a very accurate method for object tracking considering the many
exceptions that arise above. Better methods may be to use a shape matching tech-
nique for tracking the clusters. But their suitability in fast tracking for real-time
implementations has to be evaluated considering the time intensity involved. In
our simulations however we have found that that tracking based on cluster centers
along with the exception handler is adequately reliable.

2.2. CLUSTERING BASED APPROACH – I (CBA-I)

In MBA the feature vectors employed for feature extraction were those obtained
during the most recent sample. In the CBA scheme however the feature vectors
obtained during the recent five samples of the environment are used for demarcat-
ing the objects. The advantages are that the objects are more easily demarcated
as the density of feature vectors populating a cluster increases, for the object has
been repeatedly scanned. This facilitates more accurate partitioning of the data
into clusters. The differences are highlighted in Figures 6(b) and (c). Figure 6(b)
shows the point cloud of the workspace of Figure 6(a) as seen by the sensors in
one sample while 6(c) is the accumulated point cloud over the last 5 samples and
the clusters are more discernible than in 6(b). The preprocessing stage consists of
partitioning the point cloud of feature vectors (FV), where each vector is a triplet
[x, y, t], into clusters representing the objects that own the vectors. For clustering
the time component of the vector is not considered.

2.2.1. Preprocessing Module

Before describing the clustering algorithm some of its salient features are listed
below:

• Algorithm is self-organizing and determines the number of clusters.



DETECTION, TRACKING AND AVOIDANCE OF MULTIPLE DYNAMIC OBJECTS 381

(a) (b) (c)
Figure 6. (a) Robot scanning an environment with two static and one dynamic object;
(b) features extracted based on the last scan alone; (c) features extracted over the last five
samples.

• Makes use of two distance measures, center to feature vector distance (CVD)
and vector to vector distance (VVD). Both the distance measures have their
thresholds denoted as cth and vth, respectively.

• The thresholds decide the formation of a new cluster. The thresholds are
however adaptive and changes according to the distribution of the feature
vectors.

• The VVD uses the standard Euclidean metric while CVD employs the Ma-
hanolobis distance.

• The partitioning is achieved in one shot in the sense the feature vectors have
to be presented only once to the algorithm.

The algorithm can be considered novel in the sense an exactly similar algorithm
does not seem to appear in the literature but our aim here is not to stake claims
for its novelty or originality. However certain features of it makes it suitable for
the problem under consideration in the context of real-time navigation without
prior knowledge of the workspace, namely, the ability to determine the number of
clusters and one shot partitioning. The contribution of the two distance measures
and the adaptive thresholds adds to the reliability of the algorithm in finding the
number of objects in the vicinity and their centers to sufficient accuracy.

The basic clustering algorithm follows:

Inputs: Feature vectors S = {X1, X2, . . . , XN }, where each Xi = {xi, yi}, initial
threshold values for cth and vth, forgetting factor β and boundary parameter η.
In the algorithm given below parameter α = 1− β.

Outputs: number of clusters K, each cluster designated as Ci, i = {0, 1, . . . ,
K − 1}, number of feature vectors n(k)in a cluster k = {0, 1, . . . , K − 1},
cluster centers zk = {xck, yck}, covariance matrix for each cluster, eigenvalues
and eigenvectors for each cluster.

PROCEDURE CBA_CLUS.
1. Select an arbitrary feature vector, Xi , assign it to cluster, C0, or equivalently

cluster(Xi)← C0, z0 = Xi . Tag Xi as considered.



382 K. MADHAVA KRISHNA AND P. K. KALRA

2. Repeat steps 3 to 6 until all the feature vectors have been tagged as consid-
ered.
3. Find the distance of the nearest, unconsidered feature vector (FV) Xj to the

currently considered FV Xi . Denote this distance as vvd; vvd =
minj �=i de(Xi,Xj), j = {0, 1, . . . , i − 1, i + 1, . . . , N}, where de is the
Euclidean norm.

4. If vvd � vth
4a. cluster(Xj)← Ccur, where Ccur = cluster(Xi),
4b. n(Ccur) = n(Ccur)+ 1; increment the number of vectors in a class,
4c. Update center and covariance matrices for the cluster,
4d. Update VVD threshold as vth = α(vth)+ (1− α)vvd,
4e. Find cvd = dm(Xj , zcur), where dm stands for the Mahanalobis norm,
4f. If cvd > cth− η then cth = cvd + η; updating the CVD threshold.

5. If vvd > vth
5a. Find zk = mini dm(Xj , zi), i = {0, 1, . . . , K} the nearest center of a

cluster to Xj ,
5b. cvd = dm(Xj , zk),
5c. If cvd � cth,

5c1. cluster(Xj)← Ck,Ck = cluster(zk),
5c2. n(Ck) = n(Ck)+ 1,
5c3. Update centers, covariance matrices for Ck.

5d. Else if cvd > cth
5d1. K = K + 1; forms a new cluster,
5d2. zK = Xj ; the center of the new cluster takes the value of the

FV Xj ,
5d3. n(K) = 1; number of FV in the new cluster is initialized to 1,
5d4. Set the distance thresholds to their starting values.

6. Tag Xj as considered and assign Xi = Xj so that Xj becomes the FV over
which steps 3–5 are applied for the next pass of the algorithm.

7. Compute eigenvalues and eigenvectors for the clusters that got formed during
the partition process.

The pivot of the algorithm is the vector to vector distance measure, denoted as
vvd in the algorithm. Starting from an arbitrary FV Xi owned by an object Ok in
the range space the algorithm attempts a search to extract the remaining feature
vectors of Ok before branching to a FV of another object.

The algorithm can be best understood through Figures 7(a) and (b), which are
the point cloud representation of a certain environment. The arrows in the figure
indicate the direction in which the search proceeded. S in Figures 7(a) and (b)
denote the starting feature vector considered (step 1 of the algorithm). The initial
threshold, vth is generally of a higher value. The algorithm searches for the nearest
unconsidered vector to S (step 3). If the nearest vector is within the threshold dis-
tance to the vector considered, it gets added as a FV of the same object, the center,



DETECTION, TRACKING AND AVOIDANCE OF MULTIPLE DYNAMIC OBJECTS 383

(a)

(b) (c)
Figure 7. (a) The point cloud representation of an environemnt is shown on the left. The right
figure represents the direction of the search starting S. (b) The search branches from FV S1 to
S2 of the same cluster. When the search reaches S1 the center has shifted to Z1. Center Z1 is
shown as a cross. (c) The search proceeds to T1 from S1 and reenters at S3. The centers of the
split cluster Z1, Z2 are shown using a cross.

(a) (b)
Figure 8. (a) Typical variation of threshold vth for a cluster; (b) typical variation of threshold
cth for a cluster.

variances and the thresholds for that object get updated (steps 4(a)–(f)). The newly
added FV becomes the next FV to be considered to which step 3 is again applied.
In this way the algorithm proceeds to extract the vectors of the same object. The
algorithm exploits the principle that the vectors owned by the same object should be
spatially more proximal amongst themselves than the vectors belonging to another
object. Simultaneously the threshold vth shrinks and settles at a value indicative
of the average inter-vector partition within a cluster. Figure 8(a) shows the typical
plot of vth for a cluster as the search proceeds. The forgetting factor β = 1 − α



384 K. MADHAVA KRISHNA AND P. K. KALRA

is responsible for adapting vth to the inter-vector partition by this factor while
retaining the previous threshold value by a factor α = 1− β.

When the nearest FV to Xi,Xj does not fall within the threshold vth the algo-
rithm finds the center of a cluster that is closest to Xj mahanalobically (step 5a,
where dm is the Mahanalobis norm). If the closest center does not satisfy the
threshold criterion of 5c a new cluster is formed with its center and thresholds
initialized according to steps 5d1–5d4. Step 5c is crucial for those situations when
the initial FV to be considered was somewhere near the center of the object, like
the FV S in Figure 7(b). When the search reaches an end of the cluster with FV S1
(Figure 7(b)) the closest unconsidered FV to S1, which is S2 shall fail the criterion
of step 4. However since it lies within the threshold cth with respect to center Z1
(Figure 7(b)) of the same cluster at that instant it (S2) gets assigned as a FV owned
by the same object that owns S and S1. The search then proceeds from S2. The
arrows in Figure 7(b) also indicate the branching of the search from S1 to S2. While
vth is adapted to capture the average inter-vector partition distance within a cluster,
cth is adapted to delineate the boundary of the cluster and to grab those vectors that
do not satisfy criterion of step 4 but lie near the periphery of the cluster. The cth
adapts itself to trace the boundary of the cluster when the Mahanalobis norm is
employed. The typical variation of cth for a cluster with the progress of search
is shown in Figure 8(b). The boundary parameter n of step 4f is instrumental in
achieving this adaptation.

On the other hand, if T1 becomes the closest FV with respect to S1of 7b then T1
initiates the formation of a new cluster as it fails the criterion of steps 4 and 5c. In
this case the search progresses as shown in Figure 7(c) and the starting cluster is
again reentered through the feature vector S3. If S3 passes the criterion of 5c then
it gets assigned to the object that owns S and S1. If it fails, it splits the object into
two clusters with centers Z1 and Z2 indicated by crosses in Figure 7(c). Such split-
clusters are merged through a compatible cluster-merging scheme discussed very
briefly below.

Compatible Cluster Merging (CCM). It is the nature of most of the clustering
algorithms, that they do not partition the data into the expected number of clusters
unless the number of clusters is specified beforehand. This is especially so if the
algorithm has to find the number of clusters on its own from the given data. It has
been found with the problem at hand that two categories of decomposed cluster
tend to get formed that needs to be merged. One category is the split cluster dis-
cussed above and the other category is the decomposition of a dynamic object into
two or more parallel line like clusters.

The split clusters are merged if the following conditions hold:

(i) The closest inter-pixel distance between any two feature vectors owned by the
individual clusters is comparable with the steady state threshold vth obtained
for each of the two clusters.



DETECTION, TRACKING AND AVOIDANCE OF MULTIPLE DYNAMIC OBJECTS 385

(ii) The eigenvectors corresponding to the smallest eigenvalue for either of the
clusters under consideration are nearly parallel.

The decomposed clusters of a dynamic object get merged based on conditions
suggested by Krishnapuram and Freg [10]. Let the centers of the two clusters be vi
and vj , the eigenvalues of the two clusters be {λi1, . . . , λin} and {λj1, . . . , λjn} and
the normalized eigenvectors be {φi1, . . . , φin} and {φj1, . . . , φjn}. The eigenvalues
and eigenvectors are arranged in descending order of the eigenvalues. The criteria
proposed by the authors’ [10] are stated as follows

(i)
‖vi − vj‖√
λi +

√
λj

� k3, k3 lies between 2 and 4, (4)

(ii) |φT
inφjn| � k1, k1close to 1, (5)

(iii)
φT
in + φT

jn

2
vi − vj
‖vi + vj‖ � k2. (6)

The first condition states that the cluster centers should be sufficiently close and
the second states that the clusters should be almost parallel. The third requires
that the normal to the hyperplanes should be orthogonal to the line connecting the
two centers. In other words the clusters should lie in the same hyperplane. The
third condition is redundant for the current application as all the feature vectors are
represented on the same Cartesian plane. Though there exists more sophisticated
merging criteria [1] the above method has been adopted considering their simplicity
as well as their suitability for the problem at hand. The compatible clusters are
merged transitively in pairwise fashion [1].

2.2.2. Object Classification

The eigenvalues and the eigenvectors of the partitioned clusters are computed.
A cluster representative of a dynamic object can be discerned from those signifying
a static object through its elliptical or rectangular shape. Static clusters are linear
and enclose negligible area while the visible edges of dynamic objects tracked over
samples enclose a finite area.

The objects are classified according to a simple procedure as follows:

PROCEDURE CBA-I_CLAS.

for i = 1 to K
if (
√
λ2i/
√
λ1i) > κ) then Ci represents a dynamic object

else it indicates a static object
end;

Here λ1i is the eigenvalue corresponding to the first principal component and κ
is set to 0.3. The ratio is the ratio of the standard deviations along the principal axes
of the cluster. The ratio indicates the shape of the cluster and for linear clusters or
lines the ratio is closer to zero.



386 K. MADHAVA KRISHNA AND P. K. KALRA

2.2.3. Parallel Edge Motion Detection

The above classification scheme works well for dynamic objects whose visible
edges are not completely parallel to the object’s direction of motion. The objects
whose visible edges are entirely parallel to their motion direction get represented
as line-like clusters as was the case with static objects. For such objects the time
component of the FV is considered explicitly and motion is detected in the same
manner as described through procedure MBAPEMD.

3. Collision Avoidance by a Distributive Fuzzy Control

The collision avoidance behavior module comprises of a motion predictor (MP)
and a fuzzy controller that distributes itself over the dynamic objects when more
than one object is detected. The object attribute classification is achieved through
the MBA discussed in the previous chapter. The MBA was chosen considering its
rotational invariance, computational cheapness and ease of implementation. Future
versions plan to incorporate CBA that is both robust to rotational displacement
as well as noisy data. The motion predictor computes the future path of the ob-
ject based on its motion parameters estimated through the features of the object
extracted and tracked by the MBA. The locations of intersection of the object’s
center with the robot and the time (in samples) of collision from the current instant
are computed for each object based on the motion parameters. The parameters are
estimated using the recursive least squares technique considering their simplicity.
The fuzzy rules compute the changes in the robot’s velocity and direction based on
the estimates of the location and time of collision. Though explicit probabilities
of collision are not computed it is acknowledged that the point of intersection
gives only a rough estimate of the region of collision. Fuzzy inference techniques
are especially suited for handling such uncertainty in information and hence an
appropriate choice for modeling not so precisely deterministic information.

The objective of the algorithm is to steer the robot to its destination past sta-
tic and dynamic objects with no global information regarding the positions or
trajectories of the objects or the nature of the object with regards to its static or
dynamic attribute. The algorithm however makes the following assumptions while
computing a collision free path.

• The distance moved by the robot during a scan of the environment is negligi-
ble when compared with the distance moved by it between successive scans of
an environment. In other words the algorithm treats the robot to be stationary
when the sensors probe the environment. This does not necessarily mean that
during real-time the robot has to stop every time it evaluates its neighborhood.
The assumption is only to facilitate simplified computations.

• The dynamic objects chart piecewise linear paths though their positions and
velocities are not known apriori. In many real-time environments objects do
move for most duration along a linear path except while changing directions.



DETECTION, TRACKING AND AVOIDANCE OF MULTIPLE DYNAMIC OBJECTS 387

Thus the assumption of piecewise linear paths does not appear unrealistic
for most situations. Piecewise linearity allows for changes in direction while
expecting a predominantly linear trajectory.

3.1. FUZZY CODING OF COLLISION AVOIDANCE FOR A SOLITARY DYNAMIC

OBJECT

The inputs to the fuzzy rules consists of:

(i) the angular separation between the direction of approach of the dynamic
object and the robot’s direction of motion (�θ),

(ii) the expected temporal difference between the object and the robot in reaching
the collision point (�t = tocp− trcp), tocp, trcp are time taken by the object and
robot to reach the collision point and

(iii) the distance of the object’s center to the robot at the instant of sampling (�s).

The fuzzy rules output actions that actuate a change in the direction of robot’s
motion (�yd ) and a change in its velocity (�vd ). These rules vary according to
the quadrant in which the moving object is positioned with reference to the robot’s
location. From the point of view of the robot these objects are classified as being
on (i) Front-Right (FR, 1st quadrant), (ii) Front-Left (FL, 2nd quadrant), (iii) Rear-
Left (RL, 3rd quadrant) and (iv) Rear-Right (RR, 4th quadrant). The nature of the
rules that tackle an object that approaches the robot from its front-left (FL) are
shown in the inference table for direction control (Table I). Table II represents
the inference scheme for velocity control. The connotations of the fuzzy linguistic
variables denoted in the table are to be read as the terms indicated in brackets
below:

S (Small), L (Large), F (Far), N (Near), LP (Large Positive),

MP (Medium Positive), SP (Small Positive), ZP (Zero Positive),

LN (Large Negative), MN (Medium Negative), SN (Small Negative),

ZN (Zero Negative).

The first rule in Table I translates as:

If �θ is small and �t is small positive and �s is near

then �yd is large positive.

Similar inference rules are fired when the robot encounters an object along the
other three directions.

3.1.1. Some Reflections on the Fuzzy Rules

A brief discussion on the motivation behind the above rules is presented here. The
rules have been formulated to capture the elements of commonsense reasoning



388 K. MADHAVA KRISHNA AND P. K. KALRA

Table I. Fuzzy inference for orientation control of the mo-
bile robot to tackle an object that approaches from the
front-left

Rule index �θ �t �s �yd

1 S SP N LP

2 S SP F MP

3 S LP N MP

4 S LP F SP

5 L SP N MP

6 L SP F SP

7 L LP N SP

8 L LP F ZP

9 S SN N LN

10 S SN F MN

11 S LN N MN

12 S LN F SN

13 L SN N MN

14 L SN F SN

15 L LN N SN

16 L LN F ZN

Table II. Fuzzy inference for velocity control of
the mobile robot

Rule index �θ �t �vd

1 S SP LP

2 S LP MP

3 S SN 0

4 S LN SN

5 L SP MP

6 L LP SP

7 L SN MN

8 L LN SN

involved in collision avoidance of a dynamic object. The angular separation �θ ,
the time difference in reaching the point of collision �t and the distance between
the robot and the object �s were identified as the crucial underpinnings involved in
formulating an effective collision avoidance strategy. The following commonsense
reasoning lies behind the fuzzy inference scheme presented for direction control.

(i) Small values of angular separation between the robot and the approaching
object necessitate the robot to deviate from its current direction of motion. As



DETECTION, TRACKING AND AVOIDANCE OF MULTIPLE DYNAMIC OBJECTS 389

the separation becomes smaller the approach is more head-on and a purely
velocity control would be of no avail. Hence smaller the angular separation
larger should be the deviation in robot’s motion direction and vice versa.

(ii) If the object gets first classified as dynamic at near distances to the robot
a possibility of collision cannot once again be thwarted by velocity control
alone irrespective of the angular separation. One such situation is shown in
Figure 9(a). Here slowing down or increasing the speed of the robot with-
out change in orientation may not guarantee a collision free path. Thus first
classification of the dynamic attribute at small distances entails a moderate
deviation that reduces as the distance increases.

(iii) If the temporal difference in reaching the point of intersection is small, it
indicates that the robot and the object would come at very close distances in
the future though they are not proximal at the current instant. Since the robot
as well as the object is of finite size it could always be the case they graze each
other at the closest point of approach despite changes in the robot’s velocity.
Hence as a measure of prudence a moderate change in direction is actuated for
small temporal differences that decrease as the temporal difference increases.
Moreover such measures are required considering the fact that the collision
location can never be located accurately in practice. One such situation is
shown in Figure 9(b) where the closest point of approach for the two bodies
are marked with crosses.

The above musings get captured in the fuzzy rules tabulated in Table I. For
example the first rule in the table denotes that if the angular separation is small and
so are the temporal difference and the distance of the object at first identification the
change in orientation is of a large magnitude. The magnitude reduces in a fuzzily
manner if one or more of the above conditions are not vindicated.

As far as velocity control is concerned the following intuitive reasoning dictate
the rules of Table II.

(i) If the robot would be marginally ahead of the object at the location of collision
then the velocity of the robot ought to be increased in larger amounts with
every sample. This would facilitate the robot to reach the point of collision
with a larger time lead than the lead predicted at the instant of detection.

(a) (b)
Figure 9. (a) Initial identification of the object as dynamic at close distances from the robot
entails the robot to deviate even if angular separation is large. (b) The bodies come close to
each other in the future at positions indicated by crosses.



390 K. MADHAVA KRISHNA AND P. K. KALRA

However if the robot is expected to reach the collision point well ahead of
the object it would suffice to increase the velocity in minor quantities.

(ii) Similarly if the object would be ahead of the robot with a minor lead then the
velocity of the robot is decreased in sizeable amounts to increase the lead of
the object. If the early lead of the object was substantial the robot’s velocity
need to be decreased in a marginal fashion only.

The algorithm activates the collision avoidance module when the object first
gets classified as dynamic. The algorithm deactivates the module once the point of
intersection of the future trajectories appears on the rear of the robot or the object.
Usually the deactivation does not happen over one instant, the algorithm waits for
the intersection point to appear on the rear for three consecutive instances before
deactivation.

For the purpose of convenience the robot is classified as performing one of the
following behaviors: (i) the escape behavior, (ii) go-slow behavior and (iii) the
overtake behavior. The escape behavior occurs when the object approaches the
robot with narrow angular separation forcing the robot to deviate from its current
direction of motion in a tangible manner. The robot is considered to perform over-
take behavior as it increases its velocity to get past an approaching object and the
go-slow behavior while it reduces its velocity to tackle the object. Such classifi-
cation facilitates framing heuristics while tackling multiple dynamic objects that
would be discussed further down.

3.2. EXTENDING TO MULTIPLE DYNAMIC OBJECTS

It is the case in general that two objects do not get classified as dynamic during
the same instant. An easy way for extending the collision avoidance to multiple
dynamic objects is through the PBA depicted below.

3.2.1. Collision Avoidance through Priority Based Averaging (PBA)

Each classified dynamic object that has yet to be completely avoided is assigned a
priority:

pi = w1i + w2i

2
. (7)

Here w1i is the factor that considers the closeness of the dynamic object i from the
robot and w2i considers the rate of change in the distance from the object’s center
to the robot over the last time window. They are given by

w1i =



1, 0 � d̄c < 0.35,

2− 2.85d̄c, 0.35 � d̄c < 0.7,

0, elsewhere,

(8)



DETECTION, TRACKING AND AVOIDANCE OF MULTIPLE DYNAMIC OBJECTS 391

here, d̄c is the value of �s normalized in the range [0, 1].

w2i =



1, 0 � dm < 2,

(5− dm)/3, 2 � dm � 5,

0, elsewhere,

(9)

where dm is the rate of change in�s summed over the last four samples. The values
of dm that are negative are clipped to zero. It may be recalled that �s is the distance
from the robot to the object’s center.

The net turn angle due to dynamic object avoidance behavior when heuristics
are not invoked is given by:

�yd =
∑

i pi�ydi∑
i pi

. (10)

The overall turn angle considering the behavior of static object avoidance, dynamic
object avoidance and target reaching is given by

�y = wd�yd + (1− wd)�yst,

wd = max(pi) i = 0, 1, . . . , n,
(11)

where n is the number of classified dynamic objects yet to be avoided and �yst is
the turn angle due to static object avoidance and target orienting behaviors derived
in reference 14 cited in this paper. Similar computations are carried out for the
overall change in velocity.

3.2.2. The Need for Additional Rules

As mentioned before the PBA does not give a satisfactory performance on a fair
number of occasions a particular case of which is discussed below. A configuration
of the objects in the environment is represented as a string of 4 characters. The
first 2 characters represent the positions of the 1st and the 2nd dynamic object with
respect to the robot’s heading direction at the time of classification. They take the
denotations L, R implying Left and Right. The last two characters represent the
behavior that would be executed by the robot to avoid the objects. They take the
following notations (O,S,E) meaning overtake, go-slow and escape. A situation as
shown in Figure 10 is denoted as LLOS meaning that the first and second objects
are on the left of the robot and the algorithm prefers an overtake and a go-slow
behavior for their avoidance. In Figures 11–14 the sketches are not the actual paths
of the robot computed by the algorithm but a rough delineation to illustrate the idea.
The actual simulation graphs are discussed in Section 4. In these rough sketches
the robot and the dynamic objects are portrayed as points for convenience only.

Now going by the individual rules for the two objects in Figure 10 entails that
the robot turn right and increase its speed for the first object while turn left and
decrease the speed for the second. The conflict in the decisions involved for the



392 K. MADHAVA KRISHNA AND P. K. KALRA

Figure 10. Configuration of objects in LLOS mode.

1st and the 2nd object is evident. A weighted average shall give a turn whose
value is between the values obtained through the individual rules and a velocity
that lies once again somewhere between the individual values. However it has been
found that unless the robot moves with a turn angle that lies outside the convex
combination of the two values and a velocity change that again lies outside the
range it shall incur a collision. This forces us to introduce some more rules that can
be called as heuristics for enhancing the performance of collision avoidance. These
rules do not guarantee a self-sufficient scheme of avoidance but their incorporation
nevertheless improves the performance. More rules have to be introduced as newer
situations emerge and in this respect the limitations of the present method is ac-
cepted. An annotation of some of the heuristics that have been useful while dealing
with objects that approach the robot from its front half is listed below. It should
be noted that the heuristics are invoked only when the algorithm senses a possible
collision if the robot moves along the direction given by the PBA as a conflict of
options occur.

3.2.3. Avoiding the Top Two Objects in the Priority List

Heuristics listed out in this subsection are employed to avoid multiple dynamic
objects in a pairwise fashion. In other words heuristics are employed for only
the top two objects in the priority list. Another reason for employing heuristics
in a pairwise fashion is that the number of such rules increases exponentially with
an increase in number of objects considered. Moreover objects that are lower in
the priority do not pose an imminent threat to the robot and are brought into the
heuristics later. However a methodology for tackling 3 or more dynamic objects
with nearly the same priorities is also described in Section 3.2.4 further down.

Heuristic 1 (H1) (for LLOS). If the count of the number of samples from the
initiation of overtake mode in the first object exceeds four and the free space
between the nearest endpoints of the two objects exceeds an angular threshold, turn
the robot along the angular bisector between the two objects. From the subsequent
scan navigate according to the decisions of the PBA. Figure 11(a) shows the sketch
depicting the idea.



DETECTION, TRACKING AND AVOIDANCE OF MULTIPLE DYNAMIC OBJECTS 393

(a)

(b)
Figure 11. (a) A rough sketch of the path upon invoking H1 followed by the averager for a
LLOS configuration of objects. (b) Rough sketch of the path tracked by the robot through H2
followed by the rule-base.

H2. If the conditions listed in H1 are not true then invoke the overtake mode
for the second object with a turn to the right that is greater than the maximum of
the two values and with an increase in velocity greater once again than the two
individual values. Figure 11(b) shows the sketch of the path that would probably
result.

Here it is to be noted that H2 overrides the decision made by the algorithm to
launch the robot in the go-slow mode for the second object by invoking the overtake
mode for the second object also. From the subsequent scan both the objects should
appear on the robot’s left and since the overtake mode has been invoked for both
of them the averager can be invoked for steering the robot.

H3 (LLSO). The situation is illustrated in Figure 12(a). If the first object is yet to
be avoided completely then invoke the go-slow mode for the second object to let
both the objects pass by. From subsequent scans invoke the averager. The sketch of
the probable path is given in Figure 12(b).

Here again path tracked by the robot without H3, purely based on the averager
can graze the first object at very close distances on certain occasions.

H4 (LROO). If the objects are close to one another (shown in Figure 13(a)) turn
in that direction where the angular separation with the object is less. For example
if the separation with respect to the right object is less turn towards the right. From
the subsequent scan both the objects shall be on the left and the robot can avoid the



394 K. MADHAVA KRISHNA AND P. K. KALRA

(a) (b)
Figure 12. (a) Configuration of objects in LLSO mode. (b) Rough sketch of the path tracked
by the robot through H3 followed by the rule base.

(a) (b)
Figure 13. (a) Configuration of objects in LROO mode. (b) Rough sketch of the path tracked
by the robot through H4 followed by the rulebase.

(a) (b)
Figure 14. (a) Configuration of objects in LROS modes. (b) Sketch of the path tracked through
H5 followed by rulebase for LLOO.

object at safe distances based on the outputs generated by the averager. Figure 13(b)
shows the sketch of the probable path.

H5 (LROS). If the space between the objects is not enough (Figure 14(a)) turn to
the right by an angle greater than the angular separation between the robot’s head-
ing direction for the second object and invoke the overtake mode for the second
object also. Figure 14(b) shows the sketch of the probable path.



DETECTION, TRACKING AND AVOIDANCE OF MULTIPLE DYNAMIC OBJECTS 395

3.2.4. Avoiding the Top Three or More Objects from the Priority List

When more than two objects need to be avoided the change in orientation of the
robot is computed as:

yd = s(i)�φmf (�sm), (12)

�φm = max
∣∣φi+1 − φi

∣∣, i = {1, . . . , n− 1}, (13)

where n represents the number of objects in the priority list and φi is the angular
separation of the ith object with the robot’s heading direction. Here s(i) takes a
value 1 if the object i lies on the robot’s right and −1 if it lies on its left. The
i + 1th object is closer in terms of its angular separation to the robot than the ith
object if it were on the robot’s right and farther away from the robot than the ith
object if it were on the robot’s left.

�sm = min�s̄i, i = 1, 2, . . . , n, where s̄i is the normalized distance of the ith
object’s center from the robot and

f (�sm) =
{

1, 0 � �sm � 0.7,
(1− sm)

0.3 , 0.7 < �sm � 1.
(14)

In essence the algorithm tries to find out the maximum freespace between all the
pairs of adjacent objects considered from the priority list and turns along the bi-
sector of this maximum freespace. Equation (14) acts as a smoothing function that
moderates the turn from being excessively large over a single sample. The effect
of (14) is to achieve the turn angle over a sequence of steps if the distance to the
closest object is not near.

It is to be noted that the PBA is employed whenever the avoidance strategy
adopted for the individual objects in a configuration of two or more dynamic
objects do not give rise to a conflict.

4. Simulation Results

To test the efficacy of the algorithm a graphical simulator has been developed on
a Pentium machine. The robot is modeled as a circle of radius 5 pixels with a ring
of 24 sensors that are placed along the circumference with an angular separation
of 15 degrees with respect to the robot’s center. Simulations for motion detection
and collision avoidance are reported in separate sections. In motion detection the
trajectory of the robot till it identifies the dynamic object is shown while in col-
lision avoidance the entire trajectory tracked till the target is reached is depicted.
As mentioned before the maximum velocity of the robot is fixed at 6 pixels per
sample (pps) and the minimum velocity at 1.5 pps. The maximum rate of change
of velocity is fixed at 3 pixels over sample and the minimum rate of change of
velocity is −3 pixels over a sample.



396 K. MADHAVA KRISHNA AND P. K. KALRA

Figure 15. Instant of perceiving the dynamic object through MBA as the robot rotates to avoid
the static objects.

(a) (b) (c)
Figure 16. (a) Instant of perceiving object 1 by MBA; (b) perception of object 2; (c) percep-
tion of object 3.

4.1. MOTION DETECTION

4.1.1. Motion Detection through MBA

Figure 15 shows the instant where the dynamic object on the rear is detected while
the robot rotates to avoid the static object. This we feel to be an involved case
for detection for the object is on the rear and approaches the robot at an obscure
angle that is likely to go unnoticed. The environment of Figure 16(a) consists of
3 dynamic and 2 stationary objects. The MBA could clearly identify the static
and the dynamic objects. Figures 16(a)–(c) show the instances when the objects
labeled 1, 2 and 3 got identified as dynamic. Figure 17 shows the navigation in a
workspace consisting of long static objects. The MBA could once again track the
various objects and classify their attributes accurately.

4.1.2. Motion detection through CBA

Figures 18–20 delineate the classification of dynamic objects through CBA-I. Fig-
ure 18(b) is the point cloud representation of the environment of Figure 18(a) based
on the data acquired during the last five samples. The figure also shows the centers
of the clusters denoted by small circles or squares found by the CBA-I algorithm.
The static object on the robot’s right (object 5) gets represented as a split-cluster



DETECTION, TRACKING AND AVOIDANCE OF MULTIPLE DYNAMIC OBJECTS 397

Figure 17. The MBA could classify the attributes of the objects in the above works pace
accurately.

(a) (b) (c)
Figure 18. (a) An environment with 3 static and 2 dynamic objects. Objects are numbered.
(b) The point cloud representation of 23(a) with the centers of clusters formed by CBA-I.
A outlier cluster beside object 5 is shown cricled. (c) Cluster centers after CCM.

described in Section 2.2.1 while the dynamic object on the robot’s front-right
(object 4) is decomposed into two linear clusters. The prominent advantage of
this approach is that noisy readings and outliers get identified as individual noise
clusters that can be easily discarded. This is especially crucial from the point of
view of the collision avoidance scheme that would follow the classification. Since
collision avoidance involves some kind of a future prediction of the object’s motion
based on its endpoints or centers, presence of outliers can distort the centers or
endpoints from their actual locations and result in prediction errors that can affect
the collision avoidance strategy. In Figure 18(b) the outlier besides the cluster
indicating object 5, shown enclosed in a circle gets identified as a distinct noise
cluster. These clusters can then be quarantined from affecting the estimates of the
motion predictor that would follow. Figure 18(c) shows the centers of the clusters
after CCM. The dynamic object now gets represented as a rectangular/elliptical
cluster, the split-cluster on the right gets merged and the outlier discarded. The
classification strategy identified both the dynamic objects, the one on the front-



398 K. MADHAVA KRISHNA AND P. K. KALRA

Table III. Ratios of the standard deviations of the ob-
jects of Figure 18(a) along the principal axes of the
clusters

Object index (i)
√
λi1

√
λi2

√
λi1/
√
λi2

1 12.11 2.24 0.18

2 6.08 1.09 0.18

4 10 3.9 0.39

5 12.42 1.25 0.1

(a) (b) (c)
Figure 19. (a) An environment where one dynamic object crisscrosses the path of another
within a few samples. (b) Clustering results of CBA. The FV of the merged cluster of the
2 dynamic objects for t = 8 are disparate and shown connected by a line. A noisy cluster is
also shown within a box. (c) The final clusters and their centers. The coalesced dynamic object
gets decoupled into two.

right (4) through the ratios of the eigenvalues and the one on the front left (2)
through the scheme same as MBAPEMD. Table III shows the ratios of the square
roots of the eigenvalues of the clusters of Figure 18(c). The labeling of the objects
in Table III is consistent with the labeling indicated in Figure 18(a).

Figure 19(a) depicts another interesting situation, where one dynamic object
crisscrosses the path of another in quick succession. As a result the point cloud
representation of both the dynamic objects (Figure 19(b)) are merged and the
CBA-I clusters both the objects together as a single entity. Such merged clusters
get differentiated through a decoupling procedure. This procedure makes use of
the time component of the feature vectors to separate the clusters. In a nutshell the
FV of the cluster at a particular timestamp is considered. For example, considering
the FV of the merged cluster with timestamp, t = 8, shows two distinct clusters
marked with circles and connected by a line in Figure 19(b). Similarly two distinct
clusters get formed at t = 9 and t = 11. If over a sequence of five samples a
cluster can be subdivided in more than two samples the algorithm decouples the
cluster as follows. The distinct clusters that got formed at successive time stamps
are clubbed through a nearest neighbor criterion. In other words a distinct cluster
at t = 8, gets merged with the closest distinct cluster at t = 9. Thus we have two



DETECTION, TRACKING AND AVOIDANCE OF MULTIPLE DYNAMIC OBJECTS 399

(a) (b) (c)
Figure 20. (a) Navigation amidst 3 dynamic and 2 static objects labelled 1 to 5 in clockwise
direction. (b) Initial clustering results. Dynamic objects 1 and 4 are clustered as 2 clusters each
by the CBA-I. Static object 3 forms a split cluster. (c) Final cluster centers after CCM. Objects
1, 3 and 4 are represented by a single cluster now.

distinct sets of cluster considering the timestamps of t = 8 and t = 9 from the
four that got formed (two each for each timestamp). For each of the distinct set
the eigenvectors are computed. The remaining FV get assigned to that cluster to
which it is Mahanalobically closer. Thus the coupled cluster of Figure 19(b) gets
decoupled in Figure 19(c) into two. The preprocessed clusters were then classified
accurately as two dynamic and two static clusters. A noisy cluster shown enclosed
within a square in Figure 19(b) also gets discarded in Figure 19(c).

Figure 20(a) shows navigation amidst 2 static and 3 dynamic objects. The CBA
clusters the 5 objects into 8 clusters. The clusters along with the centers is shown
in Figure 20(b) with the dynamic objects labeled 1 and 4 getting decomposed into
two clusters each. Figure 20(c) represents the centers after CCM. Once again the
classification strategy could accurately identify the dynamic objects amidst static
ones. Here all the three dynamic objects got classified by the eigenvalue method
mentioned in Section 2.2.2.

4.2. COLLISION AVOIDANCE

4.2.1. Collision Avoidance of a Solitary Dynamic Object

Figures 21–23 consider collision avoidance of a single dynamic object. In all these
figures the first part shows the instant of detection and the subsequent parts show
the intermittent stages of avoidance till the target is reached. The MBA has been
employed for motion detection in all the simulations as mentioned in the initial
paragraph of Section 3. Figures 21(a)–(d) portray collision avoidance in the escape
mode. The instant of detection is shown in Figure 21(a). It can be seen that the
center of the robot lies within the plane swept out by the future trajectories of the
two end points of the object. The deviation between the predicted trajectory and the
actual path that would be followed is visible. The deviation occurs as the sensors
do not detect the same location on the object during the various scans and this
turns out to be the cardinal source of error that affects the performance of collision
avoidance. Though the deviation is minimized by a least squares fit it cannot be



400 K. MADHAVA KRISHNA AND P. K. KALRA

Figure 21. (a)–(d) Various stages in detection and avoidance of a dynamic object through
escape mode. Figure 21(a) is the instant when the dynamic object is perceived.

Figure 22. (a), (b) Collision avoidance in go-slow mode.

Figure 23. (a)–(d) Collision avoidance in overtake mode.

eliminated. The inherent approximate reasoning of fuzzy rules suppress this error
to give an acceptable performance under most conditions. Figures 22(a), (b) il-
lustrate avoidance in go-slow mode while Figures 23(a)–(d) illustrate the overtake



DETECTION, TRACKING AND AVOIDANCE OF MULTIPLE DYNAMIC OBJECTS 401

Figure 24. (a), (b) Collision avoidance of a LLOO configuration of objects.

mode. It can be seen that the robot decreases its velocity in the go-slow mode and
increases its velocity in the overtake mode.

4.2.2. Collision Avoidance of Multiple Dynamic Objects Considered Pairwise

The simulation graphs of this section show collision avoidance of multiple dynamic
objects tackled by considering them pairwise. Figures 24(a), (b) show collision
avoidance for a LLOO sequence of objects. The propensity of the algorithm using
the averager would be to turn further right since the second object was detected
on the robot’s left in Figure 24(a). However the target attractor module is given
prominence by the heuristics considering the fact the line joining the robot’s center
to the target does not intersect the future paths of both the objects. A crisp turn to
the left is essential for a smooth turn could make the robot vulnerable to the attack
of the second object from its left. The path that ensues is shown in Figure 24(b).
Figure 25 shows collision avoidance for an LLOS sequence of objects. The first
part of Figure 25(a) shows the instant when the second object is detected. Though
the second object would have been avoided in go-slow mode if detected solitarily
the configuration of the objects in space forces invocation of H2 that launches
the overtake mode for the second object also. Subsequently the robot negotiates
the objects according to the fuzzy rules and the path that ensues is shown in the
remaining parts of Figure 25. Had the robot been navigated without resorting to
H2 a collision with the second object results as shown in Figure 26. Figure 27
shows collision avoidance of 3 objects when they are detected in quick succession
while Figure 28 shows collision avoidance of four moving objects. Through the
Figures 27, 28 the application of pairwise rule of heuristics is illustrated vividly.
When the 2nd object is detected the heuristics are applied for 1st and 2nd as they
are the only objects in the priority list. When the 3rd gets detected the priority of the
1st object becomes sufficiently low. Hence a possibility of conflict is checked for
the actions generated by the rule-base for objects 2 and 3 that are on the top of the
priority list. If a conflict arises heuristics are applied for objects 2 and 3 and from
the subsequent instant the robot gets maneuvered through PBA. Similarly when the



402 K. MADHAVA KRISHNA AND P. K. KALRA

Figure 25. (a)–(c) Various stages in avoiding a LLOS configuration of objects through H2
followed by the fuzzy rules.

Figure 26. Without heuristics a collision is incurred for the same configuration of objects in
Figure 25.

Figure 27. Various stages in avoiding three dynamic objects encountered in quick succession.

Figure 28. Collision avoidance of a sequence four objects.



DETECTION, TRACKING AND AVOIDANCE OF MULTIPLE DYNAMIC OBJECTS 403

Figure 29. Collision avoidance of a sequence of 3 rapidly converging objects first identified
at nearly same instances.

Figure 30. Collision avoidance of a sequence of four converging dynamic objects encountered
in rapid succession.

fourth object is detected objects 3 and 4 are considered pairwise for heuristics in
case of a potential conflict.

4.2.3. Avoiding three or more Dynamic Objects from the Priority List

There are instances however where pairwise consideration of objects for avoidance
is not feasible since all the objects get detected in rapid succession and possess
similar priorities. In such cases the objects are avoided through the procedure
delineated in Section 3.2.4 till the application of pairwise heuristics or the PBA
becomes possible. Figure 29 indicates a situation where three dynamic objects that
converge radially onto the robot get detected in rapid succession and all of them
need to be considered for avoidance. The subsequent parts of the figure show the
various snapshots of the path charted by the robot. The various parts of Figure 30
portray the path traced by the robot as it avoids four converging dynamic objects
with nearly equal priorities from the list.



404 K. MADHAVA KRISHNA AND P. K. KALRA

(a) (b) (c)
Figure 31. (a) Collision avoidance of an object that does not change its direction and velocity.
(b) Object changes its direction by 45 degrees. (c) Object changes direction by 90 degrees and
increases its velocity. Robot initially tends to overtake but later slows down.

Figure 32. (a)–(c) The path tracked by the robot for the three cases of Figures 31(a)–(c) shown
alone in the absence of object paths.

4.2.4. Changing Direction

An apprehension regarding the suitability of the proposed method for tackling
objects that changes direction and velocity in midstream may arise. It is to be
clarified that the proposed method is appropriate for such situations also as the
following simulations indicate. Figure 31(a) shows the avoidance of a dynamic
object that moves without any change in velocity or direction. Figure 31(b) shows
avoidance of the same object as it changes its direction by 45 degrees in midstream.
The navigation strategy seems capable for handling such changes in the object’s
motion. Figure 31(c) shows the graph where the object changes its direction by
ninety degrees after the robot had already detected it and actuated the avoidance
maneuvers. The object also increases its velocity along with a change in direc-
tion. As a result the robot, which had originally adopted an overtaking behavior,
switches back to a slowing mode sensing the increase in velocity of the object as
well as a change in its direction. Figures 32(a)–(c) highlight the path tracked by
the robot by hiding the obstacle paths for the examples of Figures 31(a)–(c). The
deviation in the robot’s direction in Figure 32(a) when compared with Figure 32(b)



DETECTION, TRACKING AND AVOIDANCE OF MULTIPLE DYNAMIC OBJECTS 405

is prominent as it copes to avoid an object that has changed its direction by 45
degrees.

4.3. POSSIBLE OBJECTIONS AND LIMITATIONS

It is acknowledged that the results presented here are graphical simulations and
the utility of the approach for real-world implementations may be questioned. The
prominent objections can be from (i) the point of view of estimation of the robot’s
egomotion or the localization problem and (ii) the reliability of sensor data. It is
argued here that the above methods can be employed legitimately for experimental
robots even from the point of view of these objections.

4.3.1. The Problem of Localization

Localization problem is the problem of inaccuracy in estimating the robot’s own
position while map building. Map building procedures project range readings that
are with respect to a frame attached to the robot onto a global stationary frame.
Since the robot’s position varies between any two samples accurate representation
on the map requires an accurate estimation of robot’s own position. In this paper
the accuracy of robot’s own position is assumed while computing representations
of the external world on a map. The question is could this algorithm be adopted per
se on a robot operating in real world situations. The argument to the above question
proceeds in two ways.

First, it is argued the problem of localization that arises in a real world envi-
ronment is not the concern of this endeavor and the approaches presented here for
attribute classification should be used in tandem with approaches that overcome
localization errors.

Second, adopting the approaches directly onto a real robot that uses simple odo-
metric sensors to detect its own position without a separate strategy for minimizing
position errors would still not be a liability. Primarily the approaches presented in
this chapter are concerned with identifying local spatial changes that occur within
a short time window of observations and not with changes over temporally distant
scans. Hence long-range position estimation is not the consequence of this effort.
The changes in robot’s position over temporally proximal scans can be estimated
to working accuracy based on odometric data itself. Recently Prassler et al. [19]
have reported efficient real-time implementations on a similar problem through
map building based on odometric data itself.

4.3.2. Reliability of Sensory Data

As far as range data is concerned laser range finders have proven to be more
precise and reliable than sonar. An important consideration with range images
is the ignorance regarding which part of the conical beam actually detected the
object. Due to this projections of the range data onto the reference frame will be



406 K. MADHAVA KRISHNA AND P. K. KALRA

Figure 33. Sensors 7–10 detect the object with increasing ranges. That ray of the cone that is
most likely to have detected the object is shown in a dark line. Each sensor is marked by 3
rays, a center ray and the two extremeties of the cone.

in an average error of five degrees. Estimating which edge of the cone could have
detected the object by considering readings obtained from adjacent sensors can
reduce this error. For example, consider a contiguous set of readings obtained by
sensors 7–10 detecting an object (Figure 33). These readings can vary in 3 ways.
They can monotonically increase from 7 to 10 that indicates the object is closest
to 7 or decrease monotonically that indicates it is closest to 10 or they can decrease
and increase that indicates that they are closest to a sensor between 7 and 10. For
the monotonically increasing case we consider the reading of sensors 10 to 8 to be
given by that edge of the conical beam that is closest to sensor 7. These edges are
shown in dark lines in Figure 33 where each sensor beam is marked by 3 rays, the
center ray and the two extremities of the cone. However for sensor 7 we consider
the reading to have been obtained by the center ray since it is not possible to certify
whether the object came under the influence of the entire cone of 7 or part of it.
Hence the reading of sensor 7 is assumed to have been obtained through its central
ray to keep the error bound within 5 degrees. Similar reasoning can be applied for
the decreasing and increasing–decreasing patterns. In this way the errors for other
sensors except sensor 7 would be negligible. Other ways of tackling the above
problem exist in literature. The method of histogram mapping due to Borenstien
[2] is a popular method to circumvent the above problem.

5. Conclusions and Possible Extensions

An algorithm that detects, tracks and avoids multiple moving objects during real-
time navigation of a mobile robot has been presented and its efficacy established.
The main contribution of the algorithm lies in its ability to classify a given sequence
of range data to belong to a static or a dynamic object based on the two classi-
fication strategies provided. Most of the algorithms that employ dynamic object
avoidance with range sensors in general do not incorporate such a classification
scheme, which is probably the obvious first step in collision avoidance. Two new
methods MBA and CBA have been presented as efficient scheme for classifying the
attribute of an object. The CBA is relevant in an environment where sensor readings
are interspersed with outlier-ridden data. It is also stable to rotational movements of
the robot apart from its inherent capacity to filter outliers. In an environment where



DETECTION, TRACKING AND AVOIDANCE OF MULTIPLE DYNAMIC OBJECTS 407

noisy readings are not expected the MBA would be applicable as it is less intensive
computationally than CBA and is unaffected by rotation. Besides this the paper
also demonstrates the utility of a fuzzy control strategy for avoiding the various
dynamic objects. It also argues regarding the indispensable need for incorporating
certain heuristics for efficient collision avoidance for a mere extension of the rules
for multiple dynamic objects through PBA exposes the robot to various situations
of collision. These situations arise when the rules employed to avoid the first object
and those that avoid the second object generate conflicting actions. Apart from this
an extension of the collision avoidance strategy to tackle 3 or more dynamic ob-
jects encountered in rapid succession such that they cannot be considered pairwise
through heuristics has also been formulated. Simulation results show the efficacy
of the algorithm to steer past singular and multiple dynamic objects as well as its
ability to handle objects that change their velocity and direction.

The future scope of the work is probably multifarious that include consider-
ing objects that trace trajectories that are not piecewise linear such as a parabolic
trajectory, to cope with unexpected situations such as a dynamic object emerging
from behind a static object and an extension to cooperative collision avoidance that
involves multiple robots. A further investigation on tracking occluded objects and
incorporating such information for enhancing collision avoidance while turning
around a bend or a corner by expecting the emergence of the occluded object from
behind the corner is also being considered.

References

1. Babuska, R.: Fuzzy Modeling for Control, Kluwer Academic, Dordrecht, p. 101.
2. Borenstien, J. and Korem, Y.: The vector field histogram: Fast obstacle avoidance for mobile

robots, IEEE Trans. Robot. Automat. 7(3) (1991).
3. Cai, Q., Mitchie, A. and Aggarwal, J. K.: Tracking human motion in an indoor environment,

in: Proc. of Internat. Conf. on Image Processing.
4. Chang, C. C. and Song, K. T.: Environment prediction for a mobile robot in a dynamic

environment, IEEE Trans. Robot. Automat. 13(6) (1997).
5. Fujimura, K. and Samet, H.: A hierarchical strategy for path planning among moving obstacles,

IEEE Trans. Robot. Automat. 5, 61–69.
6. Fujimori, A., Teramoto, M., Nikiforuk, P. N. and Gupta, M. M.: Cooperative collision

avoidance between multiple mobile robots, J. Robotic Systems 17(7) (2000), 347–363.
7. Griswold, N. C. and Eem, J.: Control for mobile robot in presence of moving objects, IEEE

Trans. Robot. Automat. 6 (April 1990), 263–268.
8. Hiraga, I. et al.: An acquisition of operator’s rules for collision avoidance using fuzzy neural

networks, IEEE Trans. Fuzzy Systems 3(3) (1995), 280–287.
9. Horn, B. K. and Schunk, B. G.: Determining optical flow, Artificial Intelligence 17, 185–203.

10. Krishnapuram, R. and Frieg, C. P.: Fitting an unknown number of lines and planes to image
data through compatible cluster merging, Pattern Recognition 25(4) (1992), 385–400.

11. Lamadrid, J. F. and Gini, M. L.: Path tracking through uncharted moving obstacles, IEEE Trans.
SMC 20(6) (1990), 1408–1422.

12. Lee, P. S. and Wang, L. L.: Collision avoidance by fuzzy logic for AGV navigation, J. Robotic
Systems 11(8) (1994), 743–760.



408 K. MADHAVA KRISHNA AND P. K. KALRA

13. Mae et al.: Object tracking in cluttered background based on optical flows and edges, in: Proc.
of the Internat. Conf. on Pattern Recognition, 1996, pp. 196–200.

14. Madhava Krishna, K., and Kalra, P. K.: Solving the local minima problem for a mobile robot
by classification of spatio-temporal sensory sequences, J. Robotic Systems 17(10) (2000), 549–
564.

15. Murray, D. and Basu, A.: Motion tracking with an active camera, IEEE Trans. Pattern Aanal.
Mach. Intell. 16(5) (1994), 449–459.

16. Nam, Y. S., Lee, B. H., and Kim, M. S.: View time based moving obstacle avoidance using
stochastic prediction of obstacle motion, in: Proc. of IEEE Internat. Conf. on Robot. Automat.,
Minneapolis, MN, 1996, pp. 1081–1086.

17. Papnikolopoulos, N. P., Khosla, P. P., and Kanade, T.: Visual tracking of a moving target by a
camera mounted on a robot, IEEE Trans. Robot. Automat. 9(1) (1993), 14-35.

18. Pin, F. G. and Bender, S. R.: Adding memory processing behavior to the fuzzy behaviorist
approach: Resolving limit cycle problems in mobile robot navigation, Intelligent Automat. Soft
Comput. 5(1) (1999), 31–41.

19. Prassler, E., Scholz, J., and Elfes, A.: Tracking multiple moving objects for real-time robot
navigation, Autonom. Robots 8 (2000), 105–116.

20. Shih, C. L., Lee, T. and Gruver, W. A.: A unified approach for robot motion planning with
moving polyhedral obstacles, IEEE Trans. Systems Man Cybernet. 20(4) (1990), 903–915.

21. Song, K. T. and Chang, C. C.: Reactive navigation in dynamic environment using a multisensor
predictor, IEEE Trans. Systems Man Cybernet. 29(6) (1999).

22. Srivastava, P., Satish, S. and Mitra, P.: A distributed fuzzy logic based n-body collision avoid-
ance system, in: Proc. of the 4th Internat. Symposium on Intelligent Robotic Systems, January
1998, pp. 166–172.

23. Zhu, Q.: Hidden Markov model for dynamic obstacle avoidance of mobile robot navigation,
IEEE Trans. Robot. Automat. 7 (June 1991), 390–397.


