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Abstract 

We propose a novel approach to enhance the finger­

print image and extract features such as directional fields, 

minutiae and singular points reliably using a Hierarchical 

Markov Random Field Model. Unlike traditional finger­

print enhancement techniques, we use previously learned 

prior patterns from a set of clean fingerprints to restore 

a noisy one. We are able to recover the ridge and valley 

structure from degraded and noisy fingerprint images by 

formulating it as a hierarchical interconnected MRF that 

processes the information at multiple resolutions. The top 

layer incorporates the compatibility between an observed 

degraded fingerprint patch and prior training patterns in 

addition to ridge continuity across neighboring patches. A 
second layer accounts for spatial smoothness of the orienta­

tion field and its discontinuity at the singularities. Further 

layers could be used for incorporating higher level priors 

such as the class of the fingerprint. The strength of the pro­

posed approach lies in its flexibility to model possible vari­

ations in fingerprint images as patches and from its abil­

ity to incorporate contextual information at various resolu­

tions. Experimental results (both quantitative and qualita­

tive) clearly demonstrate the effectiveness of this approach. 

1. Introduction 

Enhancement of fingerprint images is an essential step 
in any practical fingerprint based authentication system as 
fingerprint images that are acquired in real world are often 
noisy [17]. The noises and degradations arise due to poor 
skin conditions, varying finger pressure while acquisition, 
sensor noise and dry, wet or dirty fingers. Degradations in 
the quality of the acquired image results in spurious minu­
tiae points or removal of real ones, thus directly affecting 
the ability of algorithms to reliably match the fingerprints. 

Approaches to enhancement of fingerprints can be di­
vided into two primary groups. Methods that model the 
noise to remove it includes techniques such as median fil-
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Figure l. Enhancement result using the proposed method as well 

as multi-stage Gabor filtering and its smoothed version. 

tering, Wiener filtering [9]), histogram equalization, con­
trast enhancement. Such techniques are effective only with 
a limited set of noises and usually serve as preprocessing 
steps for further levels of enhancement. Popular approaches 
model the fingerprint structure, and depending on the suit­
ability of the model to the observed fingerprint, the output 
quality varies considerably. Figure 1 shows the result of en­
hancement of a degraded fingerprint using a multi-stage Ga­
bor filter based enhancement and its smoothened version as 
compared to the proposed approach in this work (HMRF). 
The ability of a technique to recover information from a de­
graded fingerprint depends on the suitability of the assump­
tions in the model as well as the ability of the technique to 
incorporate contextual information. 

Majority of the techniques that are currently employed 
in fingerprint image enhancement involve contextual filters. 
The parameters that guide these filters include local ridge 
orientation, frequency, reliability, etc. Early attempts in­
cluded the use of elongated filters applied along the ridge 
direction [18]. Approaches that carry out the filtering com­
pletely in the frequency domain [19] or a mixture of spatial 
and frequency domain such as Short time Fourier Transform 
(STFT) [6] have been attempted. 

The most popular method of spatial domain filtering uses 
a bank of Gabor filters as proposed by Hong et al. [12]. 
Gabor filters have the optimal joint resolution in both spa­
tial and frequency domains. Further attempts for modifica­
tions and extensions to adaptively employ this method were 
made by Greenberg et al. [9], Bernard et al. [2], and Yang et 



al. [21]. The model assumes the signal at any local region 
to be a set of equidistant parallel ridges or a sinusoidal pat­
tern with a single direction and frequency. This assumption 
is violated at high curvature regions such as singularities, 
and places where ridge widths and distances vary. Further, 
the accuracy of the filters dips where contextual informa­
tion such as ridge frequency and local orientation cannot be 
reliably obtained such as regions corrupted by creases and 
smudges. Filters that are controlled by parameters can be 
either isotropic or anisotropic [16], where isotropic filters 
preserve the information while fail to recover many regions 
and anisotropic introduce many spurious structures. Hence, 
there is always a trade off involving level of enhancement 
and the generation of spurious fingerprint features. 

Our approach is motivated by two observations: i) The 
above tradeoff between enhancement and spurious struc­
tures can be improved with a tight model for fingerprints. 
i.e., the underlying model should allow all fingerprint struc­
tures while suppressing as much noise as possible. ii) 
Strong use of context to narrow down the model in degraded 
regions can help in recovery of highly degraded regions 
with minimal information. To achieve the first goal, we 
model the fingerprint using a set of image patches learned 
from clean fingerprint images. To incorporate the contex­
tual information, we model the enhancement process as that 
of inferring the most likely set of patches that generated 
the observed image. The contextual information is incor­
porated using constraints that are enforced between neigh­
boring patches. We note that the resulting inference can 
be readily modeled using a Markov Random Field, where 
the observations are image patches. To incorporate con­
textual constraints, we extend the model to a hierarchical 
version, where each layer of the model works on different 
constraints such as orientation field, ridge continuity, etc. 

In the past, Bayesian and MRF models were formulated 
to reliably extract the orientation fields from noisy finger­
prints. Dass et al. [7] use quality and smoothness pairs as 
priors to extract orientation field. This method also itera­
tively modifies the orientation field around the singularities 
to obtain a more robust estimate of orientation field. How­
ever, this approach cannot recover orientation field from 
large patches of poor quality. Lee and Prabhakar [15] ad­
dress this issue by using training samples of each orientation 
as priors. However, Orientation field alone cannot entirely 
enhance the fingerprint image especially the regions with 
heavy smudging where most of the information is lost. 

In this work, we present a unified approach that performs 
fingerprint enhancement, orientation field extraction, classi­
fication, minutiae detection and ridge frequency estimation, 
using a multi-layer MRF model. Hierarchical MRF models 
are known to handle region geometry and spatial interaction 
effectively [10]. Working with different patch-sizes on two 
layers aids in better restoration of the noisy regions using 

Figure 2. Two-stage MRF model with Ridge patch layer (Xi) and 

Orientation layer below. Restored pathes are shown at the top. 

whatever good quality regions are present in the fingerprint. 

2. Overview of the Process 

Consider a degraded fingerprint image that is divided 
into a set of square patches, Xi. We model the restora­
tion process as that of estimating the most likely set of ideal 
patches, Yi, that could generate Xi, along with satisfying 
the spatial relationship amongst them. The top layer of the 
MRF model concentrates on this task as shown in Figure 2. 
Note that our observation patches, Xi, are overlapping to 
ensure the spatial continuity of ridges in the restored im­
age. However, in highly degraded images, the image poten­
tials obtained from the patches are often ambiguous to carry 
out the estimation. We employ a second layer of smaller 
orientation patches to guide the selection of ridge image 
patches. Our restoration is an iterative process that oscil­
lates between two layers. 

In Figure 2, the ideal (restored) patch Y5 depends not 
only on the observed patch X5, but also on the context of 
its neighbors, Y2, Y4, Y6 and Ys. For example, the number 
of ridges at the left edge of Y5 should be equal to the num­
ber of ridges at the right edge of Y4 and at the same spatial 
locations. As mentioned before, the goal of restoration at 
ridge level is estimating a set of ideal patches, denoted as 
X, that are possible ridge patterns in a fingerprint, which 
also satisfies the spatial association, p(Yi, Yj) at neighbor­
ing patches. Let the orientation information of these ideal 
patches be labeled as O(Yi). Note that all the orientations 
stay with in the range 0 to 1r. The notations introduced in 
this section are followed in the rest of the paper. 



We model the Orientation field smoothness using a class 
of spatially smooth priors as described in [7] in the bottom 
layer. Though this model alone does not provide a robust 
orientation estimate at higher noise levels, iteratively updat­
ing the orientation field using the information from ridge 
layer restoration along with the smooth priors gives a good 
estimate of orientation field. In the orientation layer, the 
principal gradient tv of a block Bv not only depends on 
the gradients with in the block but also on the neighbor­
hood principal gradients,{lv). We model this dependence 
as a 3 x 3 neighborhood (Nv). The block-wise orientation 
field, O(Bv) for this layer is initialized using method pre­
sented in [1]. 

Along with the spatial interaction within the layers, 
we also establish the inter-layer connectivity information. 
The orientation information from the bottom layer blocks, 
O(Bv), is used to adjust the ridge patches in the top layer, 
while the orientation of bottom layer is updated using the 
orientation of the ridge patches, O(Yi). For each node i in 
the ridge layer (top layer), the corresponding node neigh­
borhood at the orientation layer (bottom layer) is denoted 
as NYiv. Let ono denote the current orientation state of 
any layer after ' n' iterations. Let PYiv denote the portion 
of ridge patch Yi corresponding to the block Bv in orienta­
tion layer. The neighborhood takes a pyramid structure with 
each patch in top-layer (ridge restoration layer) correspond­
ing to multiple patches (3 x 3 in our case) in bottom layer 
as shown in figure 2. 

3. Hierarchical MRF Framework 

The restoration model involves a set of ideal training 
patches, X, and the potential functions for the multi-layer 
MRF-structure. The method of storing the patches is also 
critical for computational efficiency. 

3.1. Ideal patch extraction for restoration layer 

This stage involves the extraction of ideal prior patterns 
that are consistent and model the variations in the ridge 
structures of the fingerprints. To achieve this, we efficiently 
discretize the possible finger print patterns to sample all the 
minutiae patterns, ridge densities, singularity patterns, etc. 
Henry [] 1] has proposed a fingerprint classification scheme 
that divides fingerprints into five common classes, namely 
left loop, right loop, whorl, arch and tented arch. A few 
variations from these such as double loop have also been 
noted. These classes partition all types of singularities and 
orientation field variations. Therefore, we chose a set of N 
high quality fingerprints from each of the different classes 
as training samples. The value of 'N' should be chosen 
such that it effectively covers the minutiae patterns at vari­
ous ridge densities. For a given patch-size 'P', we extract a 
patch from test fingerprints with an overlap of 'P/2' with its 
neighboring patches (2P x 2P). Bigger patches are chosen 
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Figure 3. Input fingerprint patches and matching ideal ones at var­

ious resolutions (30 x 30, 40 x 40 and 50 x 50 in clockwise order). 

to avoid the loss of pattern information at the edges when 
the test patches are registered to the observations, Xi. Af­
ter patch extraction, all the patches are normalized to zero 
mean and unit variance and are stored in the ideal patch 
database along with their orientation field O(Yj), ridge fre­
quency F(Yj) and filter-enhanced forms E(Yj) and minu­
tiae/singularity information. 

As we can see from the figure 3, large patch sizes should 
be avoided since they become pattern specific. 

3.2. Potential functions and Priors 

During the learning phase the potential functions are 
learnt from the training data. The inference phase involves 
computing the marginals of posterior distribution p(Yi IX), 
for all nodes i E [I, .. N] and computing the maximum like­
lihood estimate (MLE) of the priors for all the blocks, Bv. 
Ridge patch association potential: We model the associ­
ation potential, ¢(Yi, Xi) as function that gives the mini­
mum squared distance between the ideal patches Yi and the 
observation patch Xi. We register the patches Yi, which 
are larger, with Xi using the orientation field and its re­
llability. We find the rotation angle, 8, and translation, 
T = [tx, ty] that minimizes the distance between Yi and 

Xi, d(R(Yi, 8, T), Xi), which is the normalized sum of 
squared diff�e�ces between the transformed patch candi­
dates R(Yi, 8, T,Xi) and Xi. The potential between de­
graded fingerprint patch Xi and candidate patch Yi is given 
by: 

A.(Yo X) = 
(d(R(Yi,8,T),Xi))) 

<P . " exp 2 ' 2CTn 
(1) 

where CTn is a noise parameter and can be modeled through 
leave one out cross-validation technique [20]. 
Ridge patch Interaction potential: The Ridge patch In­
teraction potential, can be modeled as the normalized sum 
of squared differences between the patch candidates Yi and 
Yj in the overlap region at their common edge at the neigh­
boring nodes i and j. The Ridge patch Interaction potential 
between candidates Yi and Yj at nodes i and j is given by: 

""(Yo Y) = 
(_ d(Yi,Yj)) <P " J exp 2 ' 2CTc 

where CTc is noise parameter, modeled as before [20]. 

(2) 



Quality Prior : Let v p be the normalized gradient vector, 
(cos(Bp),sin(Bp)) at a pixel P = (x,y) E block (Bu). 
Then the quality prior(Qp(u)) indicates how uniformly the 
gradients( v p ) are aligned with in Bu. 

Qp(U) = L vpv� (3) 

PEBv. 

The block-wise Maximum Likelihood Estimate (MLE) 
of block principal gradient(lu) is given by the eigen vector 
corresponding to the maximum eigen value of Qp( u). The 
reliability(Wu) of block(Bu) is given by 

W _ Al - A2 u - Al + A2' (4) 

where 0 � Wu � 1 with Wu = 1 indicating that all the 
gradient vectors within the block point in the same direction 
and hence, the block information is reliable and should be 
favored more in the likelihood estimate. Al and A2 are the 
maximum and minimum eigen values of the quality prior 
Qp(u). 
Spatial smooth priors: The spatial dependence of a block, 
Bu on principal gradient vectors of neighboring blocks, N u 
is incorporated through these priors, N p ( u). If Wv repre­
sents the reliability of each of these neighboring blocks and 
tv represents the principal gradient of one of the neighbor­
hood blocks(Nu) of block, Bu, then the spatial smooth prior 
Np(u) is given by 

(5) 

where WT = LVENu Wv is normalization constant equal 
to the sum of the neighborhood radiabilities. The unit 
eigen vector of this weighted matrix Np(u) corresponding 
to maximum eigen value gives the principal direction of the 
neighborhood Nu of block Bu. 
Ridge patch Orientation potential : The Ridge patch Ori­
entation potential is split into a conditional term p(Yi I Bu) 
and a marginal term ((Bu). The conditional term is mod­
eled as the normalized sum of squared differences between 
the orientations, O(Yi) and O(Bu) and the marginal term 
indicates the reliability, Wu of the corresponding block Bu. 

where CJ 0 is modeled through cross validation [20]. 

Inter-layer Orientation prior : The dependence of a 
block, Bu, on the ridge orientations of the top layer, O(Yi) 
is modeled through these priors, jp (u). If I f gives the prin­
cipal gradient vector of block, O(PYiu), prior is given by 

(6) 

4. Multi-grid MRF Inferences and messages 

To compute the Maximum Posterior Marginal (MPM) 
estimate and obtain the ideal patch for node i in the ridge 
layer, we use belief propagation inference to solve the 
MRF [5]. Specifically, we use loopy belief propagation 
(LBP) [8] as our graph contains cycles and LBP has been 
empirically shown to perform well for several hard prob­
lems. 

In the bottom layer, we perform iterative orientation field 
estimation using quality and smoothness priors as well as 
information from ridge enhancement layer. We choose 
ICM as inference to solve the MRF at this layer, since it 
is computationally faster and also suits the basic goal of 
our restoration. This inference algorithm ensures spatial 
smoothness in the orientation field and also reliably up­
dates the ridge patches in top layer from reliable orientation 
patches. There are four different types of messages, namely 
the message passed between neighboring patches (Yi, Yj) in 
the ridge layer, the spatial smoothness priors (iu, Iv) in the 
orientation field restoration layer, and the messages to hi­
erarchically corresponding patch neighborhoods, NYiu and 
PYiu in the other layers. In the following segments, 0: de­
notes the normalization factor for these messages. 

• Intra -Ridge layer Restoration messages: The mes­
sage propagated from node i to node j in the ridge layer 
during the nth iteration is given by : 

mf,j (Yj) = 0: / 'If;(Yi, Yj )¢(Yi, Xi) 

II m�,il(Yi) II m��l(Yi)dYi (7) 
kENn,k#j hENYiu 

• Orientation - Ridge layer messages : The message 
propagated from a node u in the orientation layer to a 
node i in the ridge layer during the nth iteration repre­
sented as is given by : 

mf,r(Yj) = 0: / p(Yi, Bu) II m�,il(Yi)dYi (8) 

qENY,v 

4.1. Belief propagation 

Let P(Y, X) = P(Y1, .... , YN, X1, .... , XN) be the joint 
probability of observing Xl, .... , XN when the correspond-
ing underlying labels are Yl, .... .Y N. The ridge interaction 
potential 'If;(Yi, Yj) denotes the pairwise compatibility be­
tween two neighboring labels, Yi and Yj and ¢(YkIXk), 
the likelihood that the label Yk generates the observed 
patch,Xk. The joint probability can now be formulated as : 

P(Y, X) = P(Yl, . . .  , YN, Xl"'" XN) 

= II 'l/J (Yi, Yj) II ¢(Xk!Yk), (9) 
(i,j) k 



The first product is over all the neighboring pairs of nodes,i 
and j. The belief propagation algorithm updates messages, 
mij, from node i to node j, which are used to infer the state 
at node j. The state of node is based on the messages it 
receives and the process is repeated till convergence. The 
initial messages, mijS are set to column vectors of l's of di­
mensionality of the variable Yj. Similarly, for the messages 
coming from the Orientation layer. 

However, in a generic MRF framework 1j;(Y;, Yj) and 
¢(Yk, Xk) have huge number of components. It becomes 
computationally infeasible to compute mfy (Yj). Hence, 
we need a technique to prune components to be computa­
tionally reasonable and meaningful. We use the informa­
tion from the ridge patch orientation potential p(Y;, Bu) to 
prune the components and learn from a subset sampled from 
training set. 

The restored ridge image is obtained by estimating the 
Maximum Posterior Marginal (MPM) argmaxy,p(Y; IX) 
at all nodes i E [1, ... N] in ridge layer 

p(Y; IX) � a¢(Y;, Xi) II m�il(y;) 
kENR , k#i 

II m�,il(y;), (10) 

rENY,u 

4.2. Iterative Conditional Modes 

ICM is an iterative procedure that maximizes the condi­
tional distribution of block principal gradient, lu given its 
neighbors and other priors. Each update of ICM algorithm 
increases the value of posterior distribution given below 

7r(l IQp(u), Np(u), Jp(u)) ex exp {72Wu(l;Qp(u)lu) 
+AL,vEN,,(l; Np(u)lu) + ,(l; Jp(u)lu)} 

Hence the estimate of lu after each iteration can be ob­
tained by the eigen unit vector corresponding to the maxi­
mum eigen value of the weighted matrix 

The parameters 72 represents the ratio of contribution 
of each block towards its directional field, A represents the 
ratio of contribution of block's neighbors towards its direc­
tional field and, represents the ratio of contribution of ideal 
patches (Y;) towards the orientation field. 

4.3. Multilayer evaluation 

• Intra - Ridge layer restoration messages are updated al­
ternatively as disjoint graphs, instead of updating each 
node in every iteration for computational efficiency. 

• Ridge layer to Orientation layer message is approxi­
mately evaluated as the MPM estimate of Yj as shown 
in equation lO to avoid computational difficulties in­
volved in computing the exact integral. 

• The messages within the ridge layer are pruned based 
on the weight of the components and at every iteration 
the MAP estimate of ridge layer is used to update the 
orientation field in the bottom layer. 

One of the other advantages of our formulation is, from 
multiple low-resolution patches we can directly estimate the 
ideal patches at high resolution, thus combining fingerprint 
enhancement and resolution improvement into one process. 

5. Experimental Results and Discussions 

We split the fingerprint image into overlapping patches, 
Xi, for enhancement and each of these patches is lo­
cally normalized through adaptive information from smaller 
patches. Reliability and mean from smaller level patches 
are used to set mean for larger patches to normalize locally. 
Adaptive normalization must be performed in-order to re­
move the background from the image patches and ensure 
that ridges of the training patches are at the same intensity 
as image patches and to ensure that the noise from global 
level does not effect the local patches. For a typical 500 dpi 
image we choose a patch size of 30 x 30 and hence, ideal 
patches have a size of 60 x 60. An overlap of 5 pixels is 
allowed between the neighboring patches. 

The orientation blocks are chosen to be of size 10 x 10. 
Hence a single patch in ridge layer corresponds to 9 blocks 
in orientation layer. Larger patch size in ridge layer indi­
cates that prior is defined on a large neighborhood making 
it more powerful. Patches, Y; with low confidence scores 
are masked to avoid spurious minutiae in the restored fin­
gerprints. This is because low MPM value indicates the 
non-reliability of neighbors and prior information is used 
to restore the corresponding patch. 

5.1. Qualitative Analysis 

We first focus on the visual analysis and comparison of 
state of art technique and the proposed HMRF based tech­
nique. For comparison, we use the best implementation 
we could obtain of a Gabor filter-based enhancement tech­
nique. It uses a two-stage enhancement where orientation 
estimates obtained after the first stage is used for filter the 
original image once again [4]. Noisy fingerprints were cho­
sen from FVC 2006 [13] database and results of both the 
techniques have been qualitatively compared by a human 
examiner. Figure 4 provides a qualitative comparison on 
some of the fingerprints. B inarized and masked finger prints 
using the proposed method are shown in the second column. 
The results of Gabor based enhancement techniques [12], 



with parameters applied as described in the [4] are shown 
in third column. The fourth column shows the result of Ga­
bor filtering, masked using a orientation coherence based 
reliability threshold. 

In the first row of Figure 4, large parts of ridge infor­
mation is lost due to poor contact of a dry fingerprint. Our 
algorithm is able to judge most of the lost patterns from the 
neighborhood patterns in this case. Similarly, in figure 4, 

row 2, due to wet contact heavy smudges are produced in 
the fingerprint. Our algorithm could restore some part of 
it reliably. Some information could not be restored since 
prior information and large parts of neighborhood informa­
tion were not reliable enough to restore those patches. In 
figure 4, row 3, though significant information is lost in a 
part of the fingerprint, it has been reliably restored from 
the neighboring ridge information. In the last row of fig­
ure 4, heavy creases cause degradations in the Gabor result 
resulting in spurious structures. Since ideal patches contain 
no creases our restoration process reliably eliminates these 
creases. 

Figure 5 shows the result of minutiae extraction from the 
enhanced results using a state-of-the-art cOlmnercial finger­
print matching software. We can observe the missing minu­
tiae and singularities extracted through our approach. These 
results indicate the robustness of our approach to higher 
noise, at various levels. 

Careful analysis of the results show that the minutiae 
types are often of flipped or its location moves from one 
ridge to its neighbor. This is an artifact of the set of patches 
that are used in training and could be improved by using 
a larger set of patches. Moreover these changes does not 
affect the matching process as seen later as the minutiae 
patterns remain the same. 

5.2. Quantitative Analysis 

Quantitative Analysis was done using an experiment that 
compares the minutiae extracted through different tech­
niques. To obtain a controlled dataset with known ground 
truth, 24 fingerprints were generated using SFinGe [3] soft­
ware. The generated images can be categorized into three 
noise levels: medium, high and very high. SFinGe software 
provides an option of adding various noises types to the fin­
gerprint such as improper contact (dry and wet), scratches, 
background/sensor noise, creases etc. Medium to high lev­
els of noise was added to the generated fingerprints and 
compared with the ground truth of these noisy fingerprints 
provided by SFinGe. 

To obtain a better understanding of the power of the pro­
posed method, we used two different variants of the Gabor 
filter based enhancement method as described below: 

• FAGE - Fully Automated Gabor Enh ancement: 

This is the regular two-stage Gabor filter method as 

Original HMRF Gabor Gabor+Mask 

Figure 4. Restoration of fingerprints with various degradations us­

ing the proposed and Gabor [4] methods. 

mentioned in previous experiments [4]. The Gabor fil­
ter is applied twice sequentially and fingerprint seg­
mentation is done based on variance for noise suppres­
sion and image enhancement. 

• SAGE - Semi Automated Gabor Enh ancement: 

This is a human assisted version of Gabor filter, where 
a human expert provides inputs where reliable esti­
mates of local Orientation(O) and Frequency(f) are not 
available [4]. In fact, we provide the ideal orientation 
and local frequency for the synthetic fingerprints. The 
reader might note that such a method in not practical in 
real world as ideal values of orientation and frequency 
are never known for noisy images. However, we can 
use the results as the limit that any automatic enhance­
ment algorithm can try to achieve. 

Minutiae extraction is done for the enhanced image us­
ing a state-of-the-art commercial software and compared to 
the ground truth minutiae. Minutiae are given a lO-pixel 
tolerance range and optimal pairing is determined as given 
in [14]. The three techniques are compared through the fol-



Original HMRF Gabor 

Figure 5. Minutiae extraction results from images enhanced using 

proposed and Gabor [4] methods. 

FAGE HMRF SAGE GT Minutiae Count 

1045 898 909 910 Detected 

294 184 132 N/A Missed 

429 172 131 N/A Spurious 

32.3% 20.2% 14.5% N/A Missed (%) 

47.1% 18.9% 14.4% N/A Spurious (%) 
Table 1. Results of minutiae extracted from Fully Automated Ga-

bor Enhancement (FAGE), Proposed Method (HMRF), and Semi 

Automated Gabor Enhancement (SAGE). 

lowing metrics: 

• Missed minutiae: Count of minutiae in ground-truth 
that have no pairing with the extracted minutiae of en­
hanced image. 

• Spurious minutiae: Count of extracted minutiae in 
enhanced image that have no pairing with the minutiae 
in ground-truth. 

Table 1 summarizes the results of the experiment. Our tech­
nique reports results with accuracy close to SAGE and a sig­
nificant improvement over the fully automated techniques 
with the Missed minutiae count coming down by 12 percent 
and spurious minutiae count more than halved. 

Figure 6 provides a visual illustration of some of the im­
ages from the above experiment. One image from each 

-II -� 
(a) Ground Truth(28) (b) FAGF (24,7,3) (e) HMRF (27,4,3) 

(d) Ground Truth(36) 

(g) Ground Truth(39) (h) FAGF (67,36,64) (i) HMRF (24,30,15) 

Figure 6. Minuitae maps with (DM,MM,SM) information 

for medium, high and coarse noised fingerprints along with 

Groundtruth. 

of the three categories of fingerprints namely medium, 
high and very high noise are selected. Stated below the 
images are the counts of detected minutiae(DM), missed 
minutiae(MM) and spurious minutiae(SM). We can observe 
that the spurious minutiae are significantly reduced by our 
method. This is because the restoration is done based on 
training patterns that do not give rise to many spurious 
structures. Figure 8 gives an example of a latent fingerprint 
that is restored using the proposed approach. 

Other potential applications that are enabled by our 
restoration procedure include determination of orientation 
field and type of the fingerprint. After evaluating the ideal 
restoration Yj, for an observed patch Xi in ridge layer find­
ing the orientation field involves simply substituting the ori­
entation field of the restored patch in the position of the 
observed patch. If we previously extract the singularity in­
formation in the training fingerprints, then finding the sin­
gularity in the restored image is simply locating the restored 



Gradient HMRF 

Figure 7. Orientation fields extracted traditional gradient based 

and the proposed methods on two images. 

patch with singularity. Extracted directional fields of some 
examples are shown in Figure 7. 

Latent HMRF Result 

Figure 8. Latent fingerprint sample from NIST 27 database. 

6. Conclusions and Future Work 

Modeling the enhancement process as hierarchical MRF 
on large patches as observation allows us to use a larger 
context for restoration, providing the ability to reason from 
available patches. Experimental results indicate that we are 
able to perform close to human assisted enhancement meth­
ods. The ability to reduce false minutiae detections in noisy 
images makes the approach useful for automatic processing 
in a variety of scenarios. 

One of the primary disadvantages of the approach is that 
the time required for estimation of candidate patches from 
a large atlas is very large, making the enhancement process 
slow. We are currently working on indexing methods as 
well as parallel processing to improve the speed. Represen­
tation of fingerprints using the patch labels for matching is 
also extremely useful. 
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